We investigate the problem of coordinated chaos control on an urban expressway based on pinning synchronization of complex networks. A node coupling model of an urban expressway based on complex networks has been esta...We investigate the problem of coordinated chaos control on an urban expressway based on pinning synchronization of complex networks. A node coupling model of an urban expressway based on complex networks has been established using the cell transmission model(CTM). The pinning controller corresponding to multi-ramp coordinated controller was designed by using the delayed feedback control(DFC) method, whose objective is to realize periodical orbits from chaotic states. The concrete pinning control nodes corresponding to the subsystems of regulating the inflows from the on-ramps to the mainline were obtained and the parameters of the controller were optimized by using the stability theory of complex networks to ensure the network synchronization. The validity of the proposed coordinated chaos control method was proven via the simulation experiment. The results of the examples indicated that the order motion on urban expressway can be realized, the wide-moving traffic jam can be suppressed, and the operating efficiency is superior to that of the traditional control methods.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant No.50478088)the Natural Science Foundation of Hebei Province,China(Grant No.E2015202266)
文摘We investigate the problem of coordinated chaos control on an urban expressway based on pinning synchronization of complex networks. A node coupling model of an urban expressway based on complex networks has been established using the cell transmission model(CTM). The pinning controller corresponding to multi-ramp coordinated controller was designed by using the delayed feedback control(DFC) method, whose objective is to realize periodical orbits from chaotic states. The concrete pinning control nodes corresponding to the subsystems of regulating the inflows from the on-ramps to the mainline were obtained and the parameters of the controller were optimized by using the stability theory of complex networks to ensure the network synchronization. The validity of the proposed coordinated chaos control method was proven via the simulation experiment. The results of the examples indicated that the order motion on urban expressway can be realized, the wide-moving traffic jam can be suppressed, and the operating efficiency is superior to that of the traditional control methods.