Grid-tie voltage source converters(VSCs)can operate in three distinct modes:AC-dominant,DC-dominant,and balanced,depending on the placement of the stiff voltage sources.The distinct operation modes of the VSCs traditi...Grid-tie voltage source converters(VSCs)can operate in three distinct modes:AC-dominant,DC-dominant,and balanced,depending on the placement of the stiff voltage sources.The distinct operation modes of the VSCs traditionally demand different synchronization control techniques,leading to heterogeneous VSCs.It is challenging for the power system to accommodate and coordinate heterogeneous VSCs.A promising universal synchronization control technique for VSCs is the DC-link voltage synchronization control(DVSC)based on a lead compensator(LC).The LC DVSC stabilizes both the DC and AC voltages of a VSC while achieving synchronization with the AC grid.This results in a dual-port grid-forming(DGFM)characteristic for the VSC.However,there has been very limited study on the stability and synchronization controller design of the VSCs with the LC DVSC operating in various modes.To bridge this gap,the paper presents a quantitative analysis on the stability and steady-state performance of the LC DVSC in all three operation modes of the DGFM VSC.Based on the analysis,the paper provides step-by-step design guidelines for the LC DVSC.Furthermore,the paper uncovers an instability issue related to the LC DVSC when the DGFM VSC operates in the balanced mode.To tackle the instability issue,a virtual resistance control is proposed and integrated with the LC DVSC.Simulation results validate the analysis and demonstrate the effectiveness of the DGFM VSC with the LC DVSC designed using the proposed guidelines in all three operation modes.Overall,the paper demonstrates the feasibility of employing the DGFM VSC with the LC DVSC for all three possible operation modes,which can help overcome the challenges associated with accommodating and coordinating heterogeneous VSCs in the power system.展开更多
The present paper addresses an advanced teaching lab consisting of setting up an islanded production unit. This teaching lab takes place in the very last semester at master level for students in electrical engineering...The present paper addresses an advanced teaching lab consisting of setting up an islanded production unit. This teaching lab takes place in the very last semester at master level for students in electrical engineering with energy specialization. The purpose of this teaching lab is to combine knowledge learned in different areas such as power electronics, control, electrical machines and networks, and make use of all of them in practice. The present paper describes in detail the different steps followed by the student to set up an islanded production unit.展开更多
Cold-test experiment of an S-band broadband high power coupled-cavity traveling-wave tube(CCTWT)is introduced in this paper.The dispersion characteristic,the synchronous voltage and the interaction impedance of this S...Cold-test experiment of an S-band broadband high power coupled-cavity traveling-wave tube(CCTWT)is introduced in this paper.The dispersion characteristic,the synchronous voltage and the interaction impedance of this S-band CCTWT are measured.The experimental results are in agreement with the numerical simulation values.展开更多
基金supported in part by the Nebraska Center for Energy Sciences Research.
文摘Grid-tie voltage source converters(VSCs)can operate in three distinct modes:AC-dominant,DC-dominant,and balanced,depending on the placement of the stiff voltage sources.The distinct operation modes of the VSCs traditionally demand different synchronization control techniques,leading to heterogeneous VSCs.It is challenging for the power system to accommodate and coordinate heterogeneous VSCs.A promising universal synchronization control technique for VSCs is the DC-link voltage synchronization control(DVSC)based on a lead compensator(LC).The LC DVSC stabilizes both the DC and AC voltages of a VSC while achieving synchronization with the AC grid.This results in a dual-port grid-forming(DGFM)characteristic for the VSC.However,there has been very limited study on the stability and synchronization controller design of the VSCs with the LC DVSC operating in various modes.To bridge this gap,the paper presents a quantitative analysis on the stability and steady-state performance of the LC DVSC in all three operation modes of the DGFM VSC.Based on the analysis,the paper provides step-by-step design guidelines for the LC DVSC.Furthermore,the paper uncovers an instability issue related to the LC DVSC when the DGFM VSC operates in the balanced mode.To tackle the instability issue,a virtual resistance control is proposed and integrated with the LC DVSC.Simulation results validate the analysis and demonstrate the effectiveness of the DGFM VSC with the LC DVSC designed using the proposed guidelines in all three operation modes.Overall,the paper demonstrates the feasibility of employing the DGFM VSC with the LC DVSC for all three possible operation modes,which can help overcome the challenges associated with accommodating and coordinating heterogeneous VSCs in the power system.
文摘The present paper addresses an advanced teaching lab consisting of setting up an islanded production unit. This teaching lab takes place in the very last semester at master level for students in electrical engineering with energy specialization. The purpose of this teaching lab is to combine knowledge learned in different areas such as power electronics, control, electrical machines and networks, and make use of all of them in practice. The present paper describes in detail the different steps followed by the student to set up an islanded production unit.
文摘Cold-test experiment of an S-band broadband high power coupled-cavity traveling-wave tube(CCTWT)is introduced in this paper.The dispersion characteristic,the synchronous voltage and the interaction impedance of this S-band CCTWT are measured.The experimental results are in agreement with the numerical simulation values.