This paper studies local exponential synchronization of complex delayed networks with switching topology via switched system stability theory. First, by a common unitary matrix, the problem of synchronization is trans...This paper studies local exponential synchronization of complex delayed networks with switching topology via switched system stability theory. First, by a common unitary matrix, the problem of synchronization is transformed into the stability analysis of some linear switched delay systems. Then, when all subnetworks are synchronizable, a delay-dependent sufficient condition is given in terms of linear matrix inequalities (LMIs) which guarantees the solvability of the synchronization problem under an average dwell time scheme. We extend this result to the case that not all subnetworks are synchronizable. It is shown that in addition to average dwell time, if the ratio of the total activation time of synchronizable and non-synchronizable subnetworks satisfy an extra condition, then the problem is also solvable. Two numerical examples of delayed dynamical networks with switching topology are given, which demonstrate the effectiveness of obtained results.展开更多
In order to investigate the influence of hybrid coupling on the synchronization of delayed neural networks, by choosing an improved delay-dependent Lyapunov-Krasovskii functional, one less conservative asymptotical cr...In order to investigate the influence of hybrid coupling on the synchronization of delayed neural networks, by choosing an improved delay-dependent Lyapunov-Krasovskii functional, one less conservative asymptotical criterion based on linear matrix inequality (LMI) is established. The Kronecker product and convex combination techniques are employed. Also the bounds of time-varying delays and delay derivatives are fully considered. By adjusting the inner coupling matrix parameters and using the Matlab LMI toolbox, the design and applications of addressed coupled networks can be realized. Finally, the efficiency and applicability of the proposed results are illustrated by a numerical example with simulations.展开更多
Realistic networks display not only a complex topological structure, but also a heterogeneous distribution of weights in connection strengths. In addition, the information spreading through a complex network is often ...Realistic networks display not only a complex topological structure, but also a heterogeneous distribution of weights in connection strengths. In addition, the information spreading through a complex network is often associated with time delays due to the finite speed of signal transmission over a distance. Hence, the weighted complex network with coupling delays have meaningful implications in real world, and resultantly gains increasing attention in various fields of science and engineering. Based on the theory of asymptotic stability of linear time-delay systems, synchronization stability of the weighted complex dynamical network with coupling delays is investigated, and simple criteria are obtained for both delay-independent and delay-dependent stabilities of synchronization states. The obtained criteria in this paper encompass the established results in the literature as special cases. Some examples are given to illustrate the theoretical results.展开更多
In this paper, we propose a novel approach for simultaneously identifying unknown parameters and synchronizing time-delayed complex community networks with nonidentical nodes. Based on the LaSalle's invariance princi...In this paper, we propose a novel approach for simultaneously identifying unknown parameters and synchronizing time-delayed complex community networks with nonidentical nodes. Based on the LaSalle's invariance principle, a cri- teflon is established by constructing an effective control identification scheme and adjusting automatically the adaptive coupling strength. The proposed control law is applied to a complex community network which is periodically synchro- nized with different chaotic states. Numerical simulations are conducted to demonstrate the feasibility of the proposed method.展开更多
In this paper, phase synchronization and the frequency of two synchronized van der Pol oscillators with delay coupling are studied. The dynamics of such a system are obtained using the describing function method, and ...In this paper, phase synchronization and the frequency of two synchronized van der Pol oscillators with delay coupling are studied. The dynamics of such a system are obtained using the describing function method, and the necessary conditions for phase synchronization are also achieved. Finding the vicinity of the synchronization frequency is the major advantage of the describing function method over other traditional methods. The equations obtained based on this method justify the phenomenon of the synchronization of coupled oscillators on a frequency either higher, between, or lower than the highest, in between, or lowest natural frequency of the aggregate oscillators. Several numerical examples simulate the different cases versus the various synchronization frequency delays.展开更多
We deal with the problem of pinning sampled-data synchronization for a complex network with probabilistic time-varying coupling delay. The sampling period considered here is assumed to be less than a given bound. With...We deal with the problem of pinning sampled-data synchronization for a complex network with probabilistic time-varying coupling delay. The sampling period considered here is assumed to be less than a given bound. Without using the Kronecker product, a new synchronization error system is constructed by using the property of the random variable and input delay approach. Based on the Lyapunov theory, a delay-dependent pinning sampled-data synchronization criterion is derived in terms of linear matrix inequalities (LMIs) that can be solved effectively by using MATLAB LMI toolbox. Numerical examples are provided to demonstrate the effectiveness of the proposed scheme.展开更多
This paper mainly investigates the exponential synchronization of an inner time-varying complex network with coupling delay. Firstly, the synchronization of complex networks is decoupled into the stability of the corr...This paper mainly investigates the exponential synchronization of an inner time-varying complex network with coupling delay. Firstly, the synchronization of complex networks is decoupled into the stability of the corresponding dynamical systems. Based on the Lyapunov function theory, some sufficient conditions to guarantee its stability with any given convergence rate are derived, thus the synchronization of the networks is achieved. Finally, the results are illustrated by a simple time-varying network model with a coupling delay. All involved numerical simulations verify the correctness of the theoretical analysis.展开更多
This paper studies the global exponential synchronization of uncertain complex delayed dynamical networks. The network model considered is general dynamical delay networks with unknown network structure and unknown co...This paper studies the global exponential synchronization of uncertain complex delayed dynamical networks. The network model considered is general dynamical delay networks with unknown network structure and unknown coupling functions but bounded. Novel delay-dependent linear controllers are designed via the Lyapunov stability theory. Especially, it is shown that the controlled networks are globally exponentially synchronized with a given convergence rate. An example of typical dynamical network of this class, having the Lorenz system at each node, has been used to demonstrate and verify the novel design proposed. And, the numerical simulation results show the effectiveness of proposed synchronization approaches.展开更多
In this article, we consider the global chaotic synchronization of general cou- pled neural networks, in which subsystems have both discrete and distributed delays. Stochastic perturbations between subsystems are also...In this article, we consider the global chaotic synchronization of general cou- pled neural networks, in which subsystems have both discrete and distributed delays. Stochastic perturbations between subsystems are also considered. On the basis of two sim- ple adaptive pinning feedback control schemes, Lyapunov functional method, and stochas- tic analysis approach, several sufficient conditions are developed to guarantee global syn- chronization of the coupled neural networks with two kinds of delay couplings, even if only partial states of the nodes are coupled. The outer-coupling matrices may be symmetric or asymmetric. Unlike existing results that an isolate node is introduced as the pinning target, we pin to help the network realizing synchronization without introducing any iso- late node when the network is not synchronized. As a by product, sufficient conditions under which the network realizes synchronization without control are derived. Numerical simulations confirm the effectiveness of the obtained results.展开更多
This paper proposes new delay-dependent synchronization criteria for coupled Hopfield neural networks with time-varying delays. By construction of a suitable Lyapunov Krasovskii's functional and use of Finsler's lem...This paper proposes new delay-dependent synchronization criteria for coupled Hopfield neural networks with time-varying delays. By construction of a suitable Lyapunov Krasovskii's functional and use of Finsler's lemma, novel synchronization criteria for the networks are established in terms of linear matrix inequalities (LMIs) which can be easily solved by various effective optimization algorithms. Two numerical examples are given to illustrate the effectiveness of the proposed methods.展开更多
In this letter, a distributed protocol for sampled-data synchronization of coupled harmonic oscillators with controller failure and communication delays is proposed, and a brief procedure of convergence analysis for s...In this letter, a distributed protocol for sampled-data synchronization of coupled harmonic oscillators with controller failure and communication delays is proposed, and a brief procedure of convergence analysis for such algorithm over undirected connected graphs is provided. Furthermore, a simple yet generic criterion is also presented to guarantee synchronized oscillatory motions in coupled harmonic oscillators. Subsequently, the simulation results are worked out to demonstrate the efficiency and feasibility of the theoretical results.展开更多
Coupled phase oscillators usually achieve synchronization as the coupling strength among oscillators is increased beyond a critical value. The stability of synchronous state remains an open issue. In this paper, we st...Coupled phase oscillators usually achieve synchronization as the coupling strength among oscillators is increased beyond a critical value. The stability of synchronous state remains an open issue. In this paper, we study the stability of the synchronous state in coupled phase oscillators. It is found that numerical integration of differential equations of coupled phase oscillators with a finite time step may induce desynchronization at strong couplings. The mechanism behind this instability is that numerical accumulated errors in simulations may trigger the loss of stability of the synchronous state.Desynchronization critical couplings are found to increase and diverge as a power law with decreasing the integral time step. Theoretical analysis supports the local stability of the synchronized state. Globally the emergence of synchronous state depends on the initial conditions. Other metastable ordered states such as twisted states can coexist with the synchronous mode. These twisted states keep locally stable on a sparse network but lose their stability when the network becomes dense.展开更多
A transient delay-coupled network was proposed by modifying the standard delay-coupled network with a transient coupling technique to enlarge the synchronization domain of the network, where the synchronization domain...A transient delay-coupled network was proposed by modifying the standard delay-coupled network with a transient coupling technique to enlarge the synchronization domain of the network, where the synchronization domain is the interval of the coupling strength for which the network gets synchronized. The coupling of the transient delay-coupled network is activated when the systems are in a particular region (coupling region) of the phase space and inactivated otherwise, which is different from the standard coupling. The specific synchronization performance of the transient delay-coupled network was investigated through case studies. The relationships between the synchronization domain and the coupling region were obtained by gauging the synchronization index. It is understood that the synchronization domain changes in a non-smooth manner with the variation of the coupling region. In particular, the synchronization domain of a transient delay-coupled network is much larger than that of the standard delay-coupled network when the coupling region is appropriately determined.展开更多
In this paper, the distributed synchronization of stochastic coupled neural networks with time-varying delay is concerned via randomly occurring control. We use two Bernoulli stochastic variables to describe the occur...In this paper, the distributed synchronization of stochastic coupled neural networks with time-varying delay is concerned via randomly occurring control. We use two Bernoulli stochastic variables to describe the occurrence of distributed adaptive control and updating law according to certain probabilities. The distributed adaptive control and updating law for each vertex in the network depend on the state information on each vertex’s neighborhood. Based on Lyapunov stability theory, It</span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">ô</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> differential equations, etc., by constructing the appropriate Lyapunov functional, we study and obtain sufficient conditions for the distributed synchronization of such networks in mean square.展开更多
Mutual synchronization is a ubiquitous phenomenon that exists in various natural systems. The individual participants in this process can be modeled as oscillators, which interact by discrete pulses. In this paper, we...Mutual synchronization is a ubiquitous phenomenon that exists in various natural systems. The individual participants in this process can be modeled as oscillators, which interact by discrete pulses. In this paper, we analyze the synchronization condition of two- and multi-oscillators system, and propose a linear pulse-coupled oscillators model. We prove that the proposed model can achieve synchronization for almost all conditions. Numerical simulations are also included to investigate how different model parameters affect the synchronization. We also discuss the implementation of the model as a new approach for time synchronization in wireless sensor networks.展开更多
Chemical synaptic couplings are more common than electric(gap junction) connections in neurons.In this paper,the firing synchronizations induced by chemical synaptic coupling in chemically delayed scale-free networks ...Chemical synaptic couplings are more common than electric(gap junction) connections in neurons.In this paper,the firing synchronizations induced by chemical synaptic coupling in chemically delayed scale-free networks of modified Hodgkin-Huxley neurons have been studied.It was found that the chemical coupling-induced synchronization transitions are delay-dependent and much different for various delay lengths.In the absence of delay,the neurons exhibit a transition from chaotic bursting(CB) to bursting synchronization(BS) with desynchronized spikes in each burst;for smaller delay lengths,the firing evolves from CB to spiking synchronization(SS),but for larger delay lengths,there are transitions from CB to intermittently multiple SS behaviors.These findings show that the chemical coupling-induced firing synchronization transitions strongly depend on the chemical delay lengths,and intermittently multiple SS can only occur for larger delay lengths.This result would be helpful for better understanding the joint roles of the chemical coupling and chemical delay in the firing activity of the neurons.展开更多
This paper investigates the synchronization of time delayed complex dynamical networks with periodical on-off coupling. Both the theoretical and numerical results show that, in spite of time delays and on-off coupling...This paper investigates the synchronization of time delayed complex dynamical networks with periodical on-off coupling. Both the theoretical and numerical results show that, in spite of time delays and on-off coupling, two networks may synchronize if the coupling strength and the on-off rate are large enough. It is shown that, for undirected and strongly connected networks, the upper bound of time delays for synchronization is a decreasing function of the absolute value of the minimum eigenvalue of the adjacency matrix. The theoretical analysis confirms the numerical results and provides a better understanding of the influence of time delays and on-off coupling on the synchronization transition. The influence of random delays on the synchronization is also discussed.展开更多
In this paper, we study how adaptive coupling with time-periodic growth speed (TPGS) affects the spiking synchronization of weighted adaptive Newman-Watts Hodgkin-Huxley neuron networks with time delays. It is found t...In this paper, we study how adaptive coupling with time-periodic growth speed (TPGS) affects the spiking synchronization of weighted adaptive Newman-Watts Hodgkin-Huxley neuron networks with time delays. It is found that the neuronal spiking intermittently exhibits synchronization transitions between desynchronization and in-phase synchronization or anti-phase synchronization as TPGS amplitude or frequency is varied, showing multiple synchronization transitions. These transitions depend on the values of time delay and can occur only when time delay is close to those values that can induce synchronization transitions when the growth speed is fixed. These results show that the adaptive coupling with TPGS has great influence on the spiking synchronization of the neuronal networks and thus plays a crucial role in the information processing and transmission in neural systems.展开更多
This paper studies the stochastic synchronization problem for time-varying complex dynamical networks. This model is totally different from some existing network models. Based on the Lyapunov stability theory, inequal...This paper studies the stochastic synchronization problem for time-varying complex dynamical networks. This model is totally different from some existing network models. Based on the Lyapunov stability theory, inequality techniques, and the properties of the Weiner process, some controllers and adaptive laws are designed to ensure achieving stochastic synchronization of a complex dynamical network model. A sufficient synchronization condition is given to ensure that the proposed network model is mean-square stable. Theoretical analysis and numerical simulation fully verify the main results.展开更多
This paper investigates the global synchronization in an array of linearly coupled neural networks with constant and delayed coupling. By a simple combination of adaptive control and linear feedback with the updated l...This paper investigates the global synchronization in an array of linearly coupled neural networks with constant and delayed coupling. By a simple combination of adaptive control and linear feedback with the updated laws, some sufficient conditions are derived for global synchronization of the coupled neural networks. The coupling configuration matrix is assumed to be asymmetric, which is more coincident with the realistic network. It is shown that the approaches developed here extend and improve the earlier works. Finally, numerical simulations are presented to demonstrate the effectiveness of the theoretical results.展开更多
基金the National Natural Science Foundation of China (No.60874024, 60574013).
文摘This paper studies local exponential synchronization of complex delayed networks with switching topology via switched system stability theory. First, by a common unitary matrix, the problem of synchronization is transformed into the stability analysis of some linear switched delay systems. Then, when all subnetworks are synchronizable, a delay-dependent sufficient condition is given in terms of linear matrix inequalities (LMIs) which guarantees the solvability of the synchronization problem under an average dwell time scheme. We extend this result to the case that not all subnetworks are synchronizable. It is shown that in addition to average dwell time, if the ratio of the total activation time of synchronizable and non-synchronizable subnetworks satisfy an extra condition, then the problem is also solvable. Two numerical examples of delayed dynamical networks with switching topology are given, which demonstrate the effectiveness of obtained results.
基金The National Natural Science Foundation of China (No.60764001, 60835001,60875035, 61004032)the Postdoctoral Key Research Fund of Southeast Universitythe Natural Science Foundation of Jiangsu Province(No.BK2008294)
文摘In order to investigate the influence of hybrid coupling on the synchronization of delayed neural networks, by choosing an improved delay-dependent Lyapunov-Krasovskii functional, one less conservative asymptotical criterion based on linear matrix inequality (LMI) is established. The Kronecker product and convex combination techniques are employed. Also the bounds of time-varying delays and delay derivatives are fully considered. By adjusting the inner coupling matrix parameters and using the Matlab LMI toolbox, the design and applications of addressed coupled networks can be realized. Finally, the efficiency and applicability of the proposed results are illustrated by a numerical example with simulations.
基金supported by National Natural Science Foundation of China under Nos. 10702023 and 10832006China Post-doctoral Special Science Foundation No. 200801020+1 种基金the Natural Science Foundation of Inner Mongolia Autonomous Region under Grant No. 2007110020110supported in part by the Project of Knowledge Innovation Program (PKIP) of Chinese Academy of Sciences
文摘Realistic networks display not only a complex topological structure, but also a heterogeneous distribution of weights in connection strengths. In addition, the information spreading through a complex network is often associated with time delays due to the finite speed of signal transmission over a distance. Hence, the weighted complex network with coupling delays have meaningful implications in real world, and resultantly gains increasing attention in various fields of science and engineering. Based on the theory of asymptotic stability of linear time-delay systems, synchronization stability of the weighted complex dynamical network with coupling delays is investigated, and simple criteria are obtained for both delay-independent and delay-dependent stabilities of synchronization states. The obtained criteria in this paper encompass the established results in the literature as special cases. Some examples are given to illustrate the theoretical results.
基金Project supported by the Key Program of the National Natural Science of China(Grant No.11232009)the Shanghai Leading Academic Discipline Project,China(Grant No.S30106)
文摘In this paper, we propose a novel approach for simultaneously identifying unknown parameters and synchronizing time-delayed complex community networks with nonidentical nodes. Based on the LaSalle's invariance principle, a cri- teflon is established by constructing an effective control identification scheme and adjusting automatically the adaptive coupling strength. The proposed control law is applied to a complex community network which is periodically synchro- nized with different chaotic states. Numerical simulations are conducted to demonstrate the feasibility of the proposed method.
文摘In this paper, phase synchronization and the frequency of two synchronized van der Pol oscillators with delay coupling are studied. The dynamics of such a system are obtained using the describing function method, and the necessary conditions for phase synchronization are also achieved. Finding the vicinity of the synchronization frequency is the major advantage of the describing function method over other traditional methods. The equations obtained based on this method justify the phenomenon of the synchronization of coupled oscillators on a frequency either higher, between, or lower than the highest, in between, or lowest natural frequency of the aggregate oscillators. Several numerical examples simulate the different cases versus the various synchronization frequency delays.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61203049 and 61303020)the Natural Science Foundation of Shanxi Province of China(Grant No.2013021018-3)the Doctoral Startup Foundation of Taiyuan University of Science and Technology,China(Grant No.20112010)
文摘We deal with the problem of pinning sampled-data synchronization for a complex network with probabilistic time-varying coupling delay. The sampling period considered here is assumed to be less than a given bound. Without using the Kronecker product, a new synchronization error system is constructed by using the property of the random variable and input delay approach. Based on the Lyapunov theory, a delay-dependent pinning sampled-data synchronization criterion is derived in terms of linear matrix inequalities (LMIs) that can be solved effectively by using MATLAB LMI toolbox. Numerical examples are provided to demonstrate the effectiveness of the proposed scheme.
基金supported in part by the National Natural Science Foundation of China (Grant No. 11047114)the Key Project of the Chinese Ministry of Education (Grant No. 210141)the Youth Foundation of the Educational Committee of Hubei Province of China (Grant Nos. Q20111607 and Q20111611)
文摘This paper mainly investigates the exponential synchronization of an inner time-varying complex network with coupling delay. Firstly, the synchronization of complex networks is decoupled into the stability of the corresponding dynamical systems. Based on the Lyapunov function theory, some sufficient conditions to guarantee its stability with any given convergence rate are derived, thus the synchronization of the networks is achieved. Finally, the results are illustrated by a simple time-varying network model with a coupling delay. All involved numerical simulations verify the correctness of the theoretical analysis.
文摘This paper studies the global exponential synchronization of uncertain complex delayed dynamical networks. The network model considered is general dynamical delay networks with unknown network structure and unknown coupling functions but bounded. Novel delay-dependent linear controllers are designed via the Lyapunov stability theory. Especially, it is shown that the controlled networks are globally exponentially synchronized with a given convergence rate. An example of typical dynamical network of this class, having the Lorenz system at each node, has been used to demonstrate and verify the novel design proposed. And, the numerical simulation results show the effectiveness of proposed synchronization approaches.
基金supported by the National Natural Science Foundation of China under Grant No. 60874088 and No. 11072059the Scientific Research Fund of Yunnan Province under Grant No. 2010ZC150the Scientific Research Fund of Yunnan Provincial Education Department under Grant No. 07Y10085
文摘In this article, we consider the global chaotic synchronization of general cou- pled neural networks, in which subsystems have both discrete and distributed delays. Stochastic perturbations between subsystems are also considered. On the basis of two sim- ple adaptive pinning feedback control schemes, Lyapunov functional method, and stochas- tic analysis approach, several sufficient conditions are developed to guarantee global syn- chronization of the coupled neural networks with two kinds of delay couplings, even if only partial states of the nodes are coupled. The outer-coupling matrices may be symmetric or asymmetric. Unlike existing results that an isolate node is introduced as the pinning target, we pin to help the network realizing synchronization without introducing any iso- late node when the network is not synchronized. As a by product, sufficient conditions under which the network realizes synchronization without control are derived. Numerical simulations confirm the effectiveness of the obtained results.
基金supported by the Basic Science Research Program Through the National Research Foundation of Korea(NRF) Funded by the Ministry of Education,Science and Technology(Grant Nos.2011-0001045 and 2011-0009273)
文摘This paper proposes new delay-dependent synchronization criteria for coupled Hopfield neural networks with time-varying delays. By construction of a suitable Lyapunov Krasovskii's functional and use of Finsler's lemma, novel synchronization criteria for the networks are established in terms of linear matrix inequalities (LMIs) which can be easily solved by various effective optimization algorithms. Two numerical examples are given to illustrate the effectiveness of the proposed methods.
基金partially supported by the National Science Foundation of China(11272791,61364003,and 61203006)the Innovation Program of Shanghai Municipal Education Commission(10ZZ61 and 14ZZ151)the Science and Technology Foundation of Guizhou Province(20122316)
文摘In this letter, a distributed protocol for sampled-data synchronization of coupled harmonic oscillators with controller failure and communication delays is proposed, and a brief procedure of convergence analysis for such algorithm over undirected connected graphs is provided. Furthermore, a simple yet generic criterion is also presented to guarantee synchronized oscillatory motions in coupled harmonic oscillators. Subsequently, the simulation results are worked out to demonstrate the efficiency and feasibility of the theoretical results.
基金Project supported by the National Natural Science Foundation of China (Grant No. 11875135)。
文摘Coupled phase oscillators usually achieve synchronization as the coupling strength among oscillators is increased beyond a critical value. The stability of synchronous state remains an open issue. In this paper, we study the stability of the synchronous state in coupled phase oscillators. It is found that numerical integration of differential equations of coupled phase oscillators with a finite time step may induce desynchronization at strong couplings. The mechanism behind this instability is that numerical accumulated errors in simulations may trigger the loss of stability of the synchronous state.Desynchronization critical couplings are found to increase and diverge as a power law with decreasing the integral time step. Theoretical analysis supports the local stability of the synchronized state. Globally the emergence of synchronous state depends on the initial conditions. Other metastable ordered states such as twisted states can coexist with the synchronous mode. These twisted states keep locally stable on a sparse network but lose their stability when the network becomes dense.
文摘A transient delay-coupled network was proposed by modifying the standard delay-coupled network with a transient coupling technique to enlarge the synchronization domain of the network, where the synchronization domain is the interval of the coupling strength for which the network gets synchronized. The coupling of the transient delay-coupled network is activated when the systems are in a particular region (coupling region) of the phase space and inactivated otherwise, which is different from the standard coupling. The specific synchronization performance of the transient delay-coupled network was investigated through case studies. The relationships between the synchronization domain and the coupling region were obtained by gauging the synchronization index. It is understood that the synchronization domain changes in a non-smooth manner with the variation of the coupling region. In particular, the synchronization domain of a transient delay-coupled network is much larger than that of the standard delay-coupled network when the coupling region is appropriately determined.
文摘In this paper, the distributed synchronization of stochastic coupled neural networks with time-varying delay is concerned via randomly occurring control. We use two Bernoulli stochastic variables to describe the occurrence of distributed adaptive control and updating law according to certain probabilities. The distributed adaptive control and updating law for each vertex in the network depend on the state information on each vertex’s neighborhood. Based on Lyapunov stability theory, It</span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">ô</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> differential equations, etc., by constructing the appropriate Lyapunov functional, we study and obtain sufficient conditions for the distributed synchronization of such networks in mean square.
文摘Mutual synchronization is a ubiquitous phenomenon that exists in various natural systems. The individual participants in this process can be modeled as oscillators, which interact by discrete pulses. In this paper, we analyze the synchronization condition of two- and multi-oscillators system, and propose a linear pulse-coupled oscillators model. We prove that the proposed model can achieve synchronization for almost all conditions. Numerical simulations are also included to investigate how different model parameters affect the synchronization. We also discuss the implementation of the model as a new approach for time synchronization in wireless sensor networks.
基金supported by the Natural Science Foundation of Shandong Province of China (ZR2009AM016)
文摘Chemical synaptic couplings are more common than electric(gap junction) connections in neurons.In this paper,the firing synchronizations induced by chemical synaptic coupling in chemically delayed scale-free networks of modified Hodgkin-Huxley neurons have been studied.It was found that the chemical coupling-induced synchronization transitions are delay-dependent and much different for various delay lengths.In the absence of delay,the neurons exhibit a transition from chaotic bursting(CB) to bursting synchronization(BS) with desynchronized spikes in each burst;for smaller delay lengths,the firing evolves from CB to spiking synchronization(SS),but for larger delay lengths,there are transitions from CB to intermittently multiple SS behaviors.These findings show that the chemical coupling-induced firing synchronization transitions strongly depend on the chemical delay lengths,and intermittently multiple SS can only occur for larger delay lengths.This result would be helpful for better understanding the joint roles of the chemical coupling and chemical delay in the firing activity of the neurons.
基金Supported by the National Natural Science Foundation of China under Grant No.61681240393the Fundamental Research Funds for the Central Universities under Grant No.2015XKMS076
文摘This paper investigates the synchronization of time delayed complex dynamical networks with periodical on-off coupling. Both the theoretical and numerical results show that, in spite of time delays and on-off coupling, two networks may synchronize if the coupling strength and the on-off rate are large enough. It is shown that, for undirected and strongly connected networks, the upper bound of time delays for synchronization is a decreasing function of the absolute value of the minimum eigenvalue of the adjacency matrix. The theoretical analysis confirms the numerical results and provides a better understanding of the influence of time delays and on-off coupling on the synchronization transition. The influence of random delays on the synchronization is also discussed.
基金financially supported by the Natural Science Foundation of Shandong Province of China (ZR2012AM013)
文摘In this paper, we study how adaptive coupling with time-periodic growth speed (TPGS) affects the spiking synchronization of weighted adaptive Newman-Watts Hodgkin-Huxley neuron networks with time delays. It is found that the neuronal spiking intermittently exhibits synchronization transitions between desynchronization and in-phase synchronization or anti-phase synchronization as TPGS amplitude or frequency is varied, showing multiple synchronization transitions. These transitions depend on the values of time delay and can occur only when time delay is close to those values that can induce synchronization transitions when the growth speed is fixed. These results show that the adaptive coupling with TPGS has great influence on the spiking synchronization of the neuronal networks and thus plays a crucial role in the information processing and transmission in neural systems.
基金supported by the National Natural Science Foundation of China (Grant No.60974139)the Fundamental Research Funds for the Central Universities (Grant No.72103676)
文摘This paper studies the stochastic synchronization problem for time-varying complex dynamical networks. This model is totally different from some existing network models. Based on the Lyapunov stability theory, inequality techniques, and the properties of the Weiner process, some controllers and adaptive laws are designed to ensure achieving stochastic synchronization of a complex dynamical network model. A sufficient synchronization condition is given to ensure that the proposed network model is mean-square stable. Theoretical analysis and numerical simulation fully verify the main results.
基金Project supported by National Natural Science Foundation of China (Grant No 60674026)the Jiangsu Provincial Natural Science Foundation of China (Grant No BK2007016)Program for Innovative Research Team of Jiangnan University,China
文摘This paper investigates the global synchronization in an array of linearly coupled neural networks with constant and delayed coupling. By a simple combination of adaptive control and linear feedback with the updated laws, some sufficient conditions are derived for global synchronization of the coupled neural networks. The coupling configuration matrix is assumed to be asymmetric, which is more coincident with the realistic network. It is shown that the approaches developed here extend and improve the earlier works. Finally, numerical simulations are presented to demonstrate the effectiveness of the theoretical results.