The 3-D radar reflectivity data has become increasingly important for use in data assimilation towards convective scale numerical weather prediction as well as next generation precipitation estimation. Typically, refl...The 3-D radar reflectivity data has become increasingly important for use in data assimilation towards convective scale numerical weather prediction as well as next generation precipitation estimation. Typically, reflectivity data from multiple radars are objectively analyzed and mosaiced onto a regional 3-D Cartesian grid prior to being assimilated into the models. One multi-radar observations is the synchronization of all of the scientific issues associated with the mosaic of the observations. Since radar data is usually rapidly updated (-every 5-10 min), it is common in current multi-radar mosaic techniques to combine multiple radar' observations within a time window by assunfing that the storms are steady within the window. The assumption holds well for slow evolving precipitation systems, but for fast evolving convective storms, this assumption may be violated and the mosaic of radar observations at different times may result in inaccurate storm structure depictions. This study investigates the impact of synchronization on storm structures in multiple radar data analyses using a multi-scale storm tracking algorithm.展开更多
基金Major funding for this research was provided under the United States Federal Aviation Administration (FAA) Aviation Weather Research Program Advanced Weather Radar Technologies Prod-uct Development Team Memorandum Of Understanding(MOU)partial funding was provided under NOAA-University of Oklahoma Cooperative Agreement Grant No. NA17RJ1227, U.S. Department of Commerce
文摘The 3-D radar reflectivity data has become increasingly important for use in data assimilation towards convective scale numerical weather prediction as well as next generation precipitation estimation. Typically, reflectivity data from multiple radars are objectively analyzed and mosaiced onto a regional 3-D Cartesian grid prior to being assimilated into the models. One multi-radar observations is the synchronization of all of the scientific issues associated with the mosaic of the observations. Since radar data is usually rapidly updated (-every 5-10 min), it is common in current multi-radar mosaic techniques to combine multiple radar' observations within a time window by assunfing that the storms are steady within the window. The assumption holds well for slow evolving precipitation systems, but for fast evolving convective storms, this assumption may be violated and the mosaic of radar observations at different times may result in inaccurate storm structure depictions. This study investigates the impact of synchronization on storm structures in multiple radar data analyses using a multi-scale storm tracking algorithm.