Synchronous generators are important components of power systems and are necessary to maintain its normal and stable operation.To perform the fault diagnosis of mild inter-turn short circuit in the excitation winding ...Synchronous generators are important components of power systems and are necessary to maintain its normal and stable operation.To perform the fault diagnosis of mild inter-turn short circuit in the excitation winding of a synchronous generator,a gate recurrent unit-convolutional neural network(GRU-CNN)model whose structural parameters were determined by improved particle swarm optimization(IPSO)is proposed.The outputs of the model are the excitation current and reactive power.The total offset distance,which is the fusion of the offset distance of the excitation current and offset distance of the reactive power,was selected as the fault judgment criterion.The fusion weights of the excitation current and reactive power were determined using the anti-entropy weighting method.The fault-warning threshold and fault-warning ratio were set according to the normal total offset distance,and the fault warning time was set according to the actual situation.The fault-warning time and fault-warning ratio were used to avoid misdiagnosis.The proposed method was verified experimentally.展开更多
Hybrid excitation synchronous motor has the advantages of uniform and adjustable electromagnetic field, wide speed range and high power density. It has broad application prospects in new energy electric vehicles, wind...Hybrid excitation synchronous motor has the advantages of uniform and adjustable electromagnetic field, wide speed range and high power density. It has broad application prospects in new energy electric vehicles, wind power generation and other fields. This paper introduces the basic structure of hybrid excitation motor with modular stator, and analyzes the operation principle of hybrid excitation motor. The cooling structure of the water-cooled plate is designed, and the effects of the thickness of the water-cooled plate and the number of water channels in the water-cooled plate on the heat dissipation capacity of the water-cooled plate are analyzed by theoretical and computational fluid dynamics methods. The effects of different water cooling plate structures on water velocity, pressure drop, water pump power consumption and heat dissipation capacity were compared and analyzed. The influence of different inlet flow velocity on the maximum temperature rise of each part of the motor is analyzed, and the temperature of each part of the motor under the optimal water flow is analyzed. The influence of the traditional spiral water jacket cooling structure and the water-cooled plate cooling structure on the maximum temperature rise of the motor components is compared and analyzed. The results show that the water-cooled plate cooling structure is more suitable for the modular stator motor studied in this paper. Based on the water-cooled plate cooling structure, the air-water composite cooling structure is designed, and the effects of the air-water composite cooling structure and the water-cooled plate cooling structure on the maximum temperature rise of each component of the motor are compared and analyzed. The results show that the maximum temperature rise of each component of the motor is reduced under the air-water composite cooling structure.展开更多
This paper addresses some of the problems related to direct surface temperature measurement of a salient pole synchronous generator excitation winding in rotation. Excitation winding temperature is used for determinin...This paper addresses some of the problems related to direct surface temperature measurement of a salient pole synchronous generator excitation winding in rotation. Excitation winding temperature is used for determining the dynamic limit in a PQ diagram. The paper also addresses procedures of improving the accuracy of surface temperature measurement using the contact DS 18B20 digital temperature probes. The paper also provides experimental results of direct temperature measurement of the excitation winding surface conducted in the salient pole synchronous generator in the rotation.展开更多
We first established the mathematical model of a marine synchronous generator and its controllable phase-compounding excitation system, and then made a simulation sketch with Saber simulation software. According to "...We first established the mathematical model of a marine synchronous generator and its controllable phase-compounding excitation system, and then made a simulation sketch with Saber simulation software. According to "Regulations for the Construction and Classification of Ocean-going Steel Ships" of the China Classification Society (CCS) , some experiments are designed to verify the property of the simulation model. Some experiments, such as free start, load sudden on and off, have been CO is mpleted, and the result indicates that the model conforms to the requirements of the rules very well. It qualified for a marine electrical propulsion simulation.展开更多
常规的同步发电机最优励磁控制方法主要使用ARX(AutoRegressive with eXternal input)自回归各态经历模型生成控制传递函数,易受采样周期离散化作用影响,导致控制扰动过高,因此提出基于深度强化学习设计一种全新的同步发电机最优励磁控...常规的同步发电机最优励磁控制方法主要使用ARX(AutoRegressive with eXternal input)自回归各态经历模型生成控制传递函数,易受采样周期离散化作用影响,导致控制扰动过高,因此提出基于深度强化学习设计一种全新的同步发电机最优励磁控制方法。构建了同步发电机最优励磁控制模型,利用深度强化学习设计了同步发电机励磁模糊控制器,优化了同步发电机最优励磁控制参数,从而实现了同步发电机最优励磁控制。实验结果表明,同步发电机深度强化学习最优励磁控制方法在不同状态下的控制扰动均较低,说明控制效果较好,具有可靠性,有一定的应用价值。展开更多
Based on Hamiltonian formulation, this paper proposes a design approach to nonlinear feedback excitation control of synchronous generators with steam valve control, disturbances and unknown parameters. It is shown tha...Based on Hamiltonian formulation, this paper proposes a design approach to nonlinear feedback excitation control of synchronous generators with steam valve control, disturbances and unknown parameters. It is shown that the dynamics of the synchronous generators can be expressed as a dissipative Hamiltonian system, based on which an adaptive H-infinity controller is then designed for the systems by using the structure properties of dissipative Hamiltonian systems. Simulations show that the controller obtained in this paper is very effective.展开更多
文摘Synchronous generators are important components of power systems and are necessary to maintain its normal and stable operation.To perform the fault diagnosis of mild inter-turn short circuit in the excitation winding of a synchronous generator,a gate recurrent unit-convolutional neural network(GRU-CNN)model whose structural parameters were determined by improved particle swarm optimization(IPSO)is proposed.The outputs of the model are the excitation current and reactive power.The total offset distance,which is the fusion of the offset distance of the excitation current and offset distance of the reactive power,was selected as the fault judgment criterion.The fusion weights of the excitation current and reactive power were determined using the anti-entropy weighting method.The fault-warning threshold and fault-warning ratio were set according to the normal total offset distance,and the fault warning time was set according to the actual situation.The fault-warning time and fault-warning ratio were used to avoid misdiagnosis.The proposed method was verified experimentally.
基金supported by the National Natural Science Foundation of China (51907129)Project Supported by Department of Science and Technology of Liaoning Province (2021-MS-236)。
文摘Hybrid excitation synchronous motor has the advantages of uniform and adjustable electromagnetic field, wide speed range and high power density. It has broad application prospects in new energy electric vehicles, wind power generation and other fields. This paper introduces the basic structure of hybrid excitation motor with modular stator, and analyzes the operation principle of hybrid excitation motor. The cooling structure of the water-cooled plate is designed, and the effects of the thickness of the water-cooled plate and the number of water channels in the water-cooled plate on the heat dissipation capacity of the water-cooled plate are analyzed by theoretical and computational fluid dynamics methods. The effects of different water cooling plate structures on water velocity, pressure drop, water pump power consumption and heat dissipation capacity were compared and analyzed. The influence of different inlet flow velocity on the maximum temperature rise of each part of the motor is analyzed, and the temperature of each part of the motor under the optimal water flow is analyzed. The influence of the traditional spiral water jacket cooling structure and the water-cooled plate cooling structure on the maximum temperature rise of the motor components is compared and analyzed. The results show that the water-cooled plate cooling structure is more suitable for the modular stator motor studied in this paper. Based on the water-cooled plate cooling structure, the air-water composite cooling structure is designed, and the effects of the air-water composite cooling structure and the water-cooled plate cooling structure on the maximum temperature rise of each component of the motor are compared and analyzed. The results show that the maximum temperature rise of each component of the motor is reduced under the air-water composite cooling structure.
文摘This paper addresses some of the problems related to direct surface temperature measurement of a salient pole synchronous generator excitation winding in rotation. Excitation winding temperature is used for determining the dynamic limit in a PQ diagram. The paper also addresses procedures of improving the accuracy of surface temperature measurement using the contact DS 18B20 digital temperature probes. The paper also provides experimental results of direct temperature measurement of the excitation winding surface conducted in the salient pole synchronous generator in the rotation.
基金The paper is supported by the National Research Foundation of China for Doctoral Program of Higher Education under Grant No20040497012
文摘We first established the mathematical model of a marine synchronous generator and its controllable phase-compounding excitation system, and then made a simulation sketch with Saber simulation software. According to "Regulations for the Construction and Classification of Ocean-going Steel Ships" of the China Classification Society (CCS) , some experiments are designed to verify the property of the simulation model. Some experiments, such as free start, load sudden on and off, have been CO is mpleted, and the result indicates that the model conforms to the requirements of the rules very well. It qualified for a marine electrical propulsion simulation.
文摘常规的同步发电机最优励磁控制方法主要使用ARX(AutoRegressive with eXternal input)自回归各态经历模型生成控制传递函数,易受采样周期离散化作用影响,导致控制扰动过高,因此提出基于深度强化学习设计一种全新的同步发电机最优励磁控制方法。构建了同步发电机最优励磁控制模型,利用深度强化学习设计了同步发电机励磁模糊控制器,优化了同步发电机最优励磁控制参数,从而实现了同步发电机最优励磁控制。实验结果表明,同步发电机深度强化学习最优励磁控制方法在不同状态下的控制扰动均较低,说明控制效果较好,具有可靠性,有一定的应用价值。
基金This work was supported by the National Natural Science Foundation of China (No.G60474001) the Research Fund for Doctoral Program of Chinese Higher Education (No.G20040422059).
文摘Based on Hamiltonian formulation, this paper proposes a design approach to nonlinear feedback excitation control of synchronous generators with steam valve control, disturbances and unknown parameters. It is shown that the dynamics of the synchronous generators can be expressed as a dissipative Hamiltonian system, based on which an adaptive H-infinity controller is then designed for the systems by using the structure properties of dissipative Hamiltonian systems. Simulations show that the controller obtained in this paper is very effective.