This paper presents an approach to build a communication behavioural semantic model for heterogeneous distributed systems that include synchronous and asynchronous communications. Since each node of such system has it...This paper presents an approach to build a communication behavioural semantic model for heterogeneous distributed systems that include synchronous and asynchronous communications. Since each node of such system has its own physical clock, it brings the challenges of correctly specifying the system time constraints. Based on the logical clocks proposed by Lamport, and CCSL proposed by Aoste team in INRIA, as well as pNets from Oasis team in INRIA, we develop timed-pNets to model communication behaviours for distributed systems. Timed-pNets are tree style hierarchical structures. Each node is associated with a timed specification which consists of a set of logical clocks and some relations on clocks. The leaves are represented by timed-pLTSs. Non-leaf nodes (called timed-pNets nodes) are synchronisation devices that synchronize the behaviours of subnets (these subnets can be leaves or non-leaf nodes). Both timed-pLTSs and timed-pNets nodes can be translated to timed specifications. All these notions and methods are illustrated on a simple use-case of car insertion from the area of intelligent transportation systems (ITS). In the end the TimeSquare tool is used to simulate and check the validity of our model.展开更多
基金This work was partially funded by the INRIA Associated Team DAESD between INRIA and ECNU by the National Basic Research Program of China (973 Program) (2011CB302802)+1 种基金 by the National Natural Science Foundation of China (Grant Nos. 61321064 and 61370100) by Shanghai Knowledge Service Platform Project (ZF1213). We give great thanks to Frederic Mallet and Jalien Deantoni who took time to discuss with us and gave us bunches of advices. We are also indebted to the anonymous referees for their suggested improvements.
文摘This paper presents an approach to build a communication behavioural semantic model for heterogeneous distributed systems that include synchronous and asynchronous communications. Since each node of such system has its own physical clock, it brings the challenges of correctly specifying the system time constraints. Based on the logical clocks proposed by Lamport, and CCSL proposed by Aoste team in INRIA, as well as pNets from Oasis team in INRIA, we develop timed-pNets to model communication behaviours for distributed systems. Timed-pNets are tree style hierarchical structures. Each node is associated with a timed specification which consists of a set of logical clocks and some relations on clocks. The leaves are represented by timed-pLTSs. Non-leaf nodes (called timed-pNets nodes) are synchronisation devices that synchronize the behaviours of subnets (these subnets can be leaves or non-leaf nodes). Both timed-pLTSs and timed-pNets nodes can be translated to timed specifications. All these notions and methods are illustrated on a simple use-case of car insertion from the area of intelligent transportation systems (ITS). In the end the TimeSquare tool is used to simulate and check the validity of our model.