This work investigates the data quality issue for synchrophasor applications, and pays particular attention to synchronization signal loss and synchrophasor data loss events. First, the historical synchronization sign...This work investigates the data quality issue for synchrophasor applications, and pays particular attention to synchronization signal loss and synchrophasor data loss events. First, the historical synchronization signal loss events are analyzed and the potential reasons and solutions are discussed. Then, the scenario of a small amount of synchrophasor data loss is studied and a Lagrange interpolating polynomial method is used to adaptively estimate the incomplete and missing data. The performance of proposed method is demonstrated with simulation results.Specifically, the proposed method considers the trade-off between the estimation accuracy and the hardware cost,and could be efficiently employed in reality.展开更多
基金supported in part by the U.S.National Science Foundation(U.S.NSF)through the U.S.NSF/Department of Energy(DOE)Engineering Research Center Program under Award EEC-1041877 for CURENT
文摘This work investigates the data quality issue for synchrophasor applications, and pays particular attention to synchronization signal loss and synchrophasor data loss events. First, the historical synchronization signal loss events are analyzed and the potential reasons and solutions are discussed. Then, the scenario of a small amount of synchrophasor data loss is studied and a Lagrange interpolating polynomial method is used to adaptively estimate the incomplete and missing data. The performance of proposed method is demonstrated with simulation results.Specifically, the proposed method considers the trade-off between the estimation accuracy and the hardware cost,and could be efficiently employed in reality.