期刊文献+
共找到38篇文章
< 1 2 >
每页显示 20 50 100
Adaptive Short-Time Fractional Fourier Transform Based on Minimum Information Entropy 被引量:2
1
作者 Bing Deng Dan Jin Junbao Luan 《Journal of Beijing Institute of Technology》 EI CAS 2021年第3期265-273,共9页
Traditional short-time fractional Fourier transform(STFrFT)has a single and fixed window function,which can not be adjusted adaptively according to the characteristics of fre-quency and frequency change rate.In order ... Traditional short-time fractional Fourier transform(STFrFT)has a single and fixed window function,which can not be adjusted adaptively according to the characteristics of fre-quency and frequency change rate.In order to overcome the shortcomings,the STFrFT method with adaptive window function is proposed.In this method,the window function of STFrFT is ad-aptively adjusted by establishing a library containing multiple window functions and taking the minimum information entropy as the criterion,so as to obtain a time-frequency distribution that better matches the desired signal.This method takes into account the time-frequency resolution characteristics of STFrFT and the excellent characteristics of adaptive adjustment to window func-tion,improves the time-frequency aggregation on the basis of eliminating cross term interference,and provides a new tool for improving the time-frequency analysis ability of complex modulated sig-nals. 展开更多
关键词 short-time fractional fourier transform(STFrFT) adaptive algorithm minimum in-formation entropy
下载PDF
Application of short-time Fourier transform to high-rise frame structural-health monitoring based on change of inherent frequency over time
2
作者 郭少霞 PEI Qiang 《Journal of Chongqing University》 CAS 2017年第1期1-10,共10页
The high-rise frame structure has become more and more widespread, like its damage from the complication of the environment. The traditional method of damage detection, which is only suitable for the stationary signal... The high-rise frame structure has become more and more widespread, like its damage from the complication of the environment. The traditional method of damage detection, which is only suitable for the stationary signal, does not apply to a high-rise frame structure because its damage signal is non-stationary. Thus, this paper presents an application of the short-time Fourier transform(STFT) to damage detection of high-rise frame structures. Compared with the fast Fourier transform, STFT is found to be able to express the frequency spectrum property of the time interval using the signal within this interval. Application of STFT to analyzing a Matlab model and the shaking table test with a twelve-story frame-structure model reveals that there is a positive correlation between the slope of the frequency versus time and the damage level. If the slope is equal to or greater than zero, the structure is not damaged. If the slope is smaller than zero, the structure is damaged, and the less the slope is, the more serious the damage is. The damage results from calculation based on the Matlab model are consistent with those from the shaking table test, demonstrating that STFT can be a reliable tool for the damage detection of high-rise frame structures. 展开更多
关键词 short-time fourier transform fast fourier transform damage identification shaking table test time-frequency analysis
下载PDF
Estimation of structural modal parameters by fourier transform with an optimal window 被引量:1
3
作者 朱宏平 万信华 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2005年第5期595-598,共4页
An adaptive Fourier Transform (FT) with an optimal window has been proposed for the time-frequency analysis of nonstationary time series. The method allows for a good estimation of both frequency and amplitude of th... An adaptive Fourier Transform (FT) with an optimal window has been proposed for the time-frequency analysis of nonstationary time series. The method allows for a good estimation of both frequency and amplitude of the spectrum and can be easily applied to the general case of time-varying signals. The evaluation of the proposed approach has been performed on measured time-varying signals from a suspension bridge model and a steel frame model whose data have the typical non-stationary characteristics. The numerical results show that the proposed approach can overcome some of the difficulties encountered in the classic Fourier transform technique and can achieve higher computation accuracy. 展开更多
关键词 short-time fourier transform optimal window length modal parameters engineering structures
下载PDF
电力系统强迫振荡源定位的时-频域耗散能量流方法
4
作者 姜涛 叶楠 李国庆 《电力系统自动化》 EI CSCD 北大核心 2024年第19期120-128,共9页
准确定位强迫振荡源对电力系统的安全稳定运行意义重大。然而,由于强迫振荡模式的可观性和振荡时变特征,传统方法难以从多通道量测信息中有效提取振荡分量,从而降低了基于耗散能量流的强迫振荡源定位方法的定位精度。为此,提出了一种基... 准确定位强迫振荡源对电力系统的安全稳定运行意义重大。然而,由于强迫振荡模式的可观性和振荡时变特征,传统方法难以从多通道量测信息中有效提取振荡分量,从而降低了基于耗散能量流的强迫振荡源定位方法的定位精度。为此,提出了一种基于耗散能量流的电力系统强迫振荡源时-频域定位方法。首先,根据节点各量测通道间信息相关性,利用同步压缩短时傅里叶变换处理节点多通道量测信息,构建节点统一时-频系数矩阵;然后,根据强迫振荡分量的能量特性,利用时-频域能量筛选并同步提取时-频系数矩阵中的时-频域强迫振荡分量;进一步,根据测量信息的时-频域特性,在传统时域强迫振荡耗散能量流计算模型的基础上推导出基于同步压缩短时傅里叶变换的时-频域耗散能量流计算模型,并根据系统强迫振荡期间的时-频域耗散能量流能量特性定位强迫振荡源;最后,将所提方法应用于WECC 179节点测试系统、WECC 240节点测试系统的仿真振荡场景以及美国New England的实际振荡事件,所得结果表明所提时-频域定位方法可快速、精准定位强迫振荡源。 展开更多
关键词 电力系统稳定 强迫振荡 振荡源定位 耗散能量流 耗散能量谱 同步压缩短时傅里叶变换
下载PDF
Localization method of subsynchronous oscillation source based on high-resolution time-frequency distribution image and CNN
5
作者 Hui Liu Yundan Cheng +3 位作者 Yanhui Xu Guanqun Sun Rusi Chen Xiaodong Yu 《Global Energy Interconnection》 EI CSCD 2024年第1期1-13,共13页
The penetration of new energy sources such as wind power is increasing,which consequently increases the occurrence rate of subsynchronous oscillation events.However,existing subsynchronous oscillation source-identific... The penetration of new energy sources such as wind power is increasing,which consequently increases the occurrence rate of subsynchronous oscillation events.However,existing subsynchronous oscillation source-identification methods primarily analyze fixed-mode oscillations and rarely consider time-varying features,such as frequency drift,caused by the random volatility of wind farms when oscillations occur.This paper proposes a subsynchronous oscillation sourcelocalization method that involves an enhanced short-time Fourier transform and a convolutional neural network(CNN).First,an enhanced STFT is performed to secure high-resolution time-frequency distribution(TFD)images from the measured data of the generation unit ports.Next,these TFD images are amalgamated to form a subsynchronous oscillation feature map that serves as input to the CNN to train the localization model.Ultimately,the trained CNN model realizes the online localization of subsynchronous oscillation sources.The effectiveness and accuracy of the proposed method are validated via multimachine system models simulating forced and natural oscillation events using the Power Systems Computer Aided Design platform.Test results show that the proposed method can localize subsynchronous oscillation sources online while considering unpredictable fluctuations in wind farms,thus providing a foundation for oscillation suppression in practical engineering scenarios. 展开更多
关键词 Subsynchronous oscillation source localization Synchronous squeezing transform Enhanced short-time fourier transform Convolutional neural networks
下载PDF
SRMD:Sparse Random Mode Decomposition
6
作者 Nicholas Richardson Hayden Schaeffer Giang Tran 《Communications on Applied Mathematics and Computation》 EI 2024年第2期879-906,共28页
Signal decomposition and multiscale signal analysis provide many useful tools for timefrequency analysis.We proposed a random feature method for analyzing time-series data by constructing a sparse approximation to the... Signal decomposition and multiscale signal analysis provide many useful tools for timefrequency analysis.We proposed a random feature method for analyzing time-series data by constructing a sparse approximation to the spectrogram.The randomization is both in the time window locations and the frequency sampling,which lowers the overall sampling and computational cost.The sparsification of the spectrogram leads to a sharp separation between time-frequency clusters which makes it easier to identify intrinsic modes,and thus leads to a new data-driven mode decomposition.The applications include signal representation,outlier removal,and mode decomposition.On benchmark tests,we show that our approach outperforms other state-of-the-art decomposition methods. 展开更多
关键词 Sparse random features Signal decomposition short-time fourier transform
下载PDF
Radar Signal Intra-Pulse Feature Extraction Based on Improved Wavelet Transform Algorithm 被引量:2
7
作者 Wenxu Zhang Fuli Sun Bing Wang 《International Journal of Communications, Network and System Sciences》 2017年第8期118-127,共10页
With the new system radar put into practical use, the characteristics of complex radar signals are changing and developing. The traditional analysis method of one-dimensional transformation domain is no longer applica... With the new system radar put into practical use, the characteristics of complex radar signals are changing and developing. The traditional analysis method of one-dimensional transformation domain is no longer applicable to the modern radar signal processing, and it is necessary to seek new methods in the two-dimensional transformation domain. The time-frequency analysis method is the most widely used method in the two-dimensional transformation domain. In this paper, two typical time-frequency analysis methods of short-time Fourier transform and Wigner-Ville distribution are studied by analyzing the time-frequency transform of typical radar reconnaissance linear frequency modulation signal, aiming at the problem of low accuracy and sen-sitivity to the signal noise of common methods, the improved wavelet transform algorithm was proposed. 展开更多
关键词 Intra-Pulse Feature Extraction TIME-FREQUENCY Analysis short-time fourier transform Wigner-Ville Distribution WAVELET transform
下载PDF
基于同步压缩短时傅里叶变换的毫米波雷达人体动作识别 被引量:1
8
作者 陈晓楠 汪恩铭 +1 位作者 于欣瑶 李姝雅 《现代电子技术》 2023年第9期46-49,共4页
针对人体动作识别问题,提出一种基于同步压缩短时傅里叶变换的人体动作识别方法。使用毫米波雷达进行人体动作数据的采集,将采集到的数据进行同步压缩短时傅里叶变换得到其时频图;然后使用卷积神经网络对不同动作进行微多普勒特征提取... 针对人体动作识别问题,提出一种基于同步压缩短时傅里叶变换的人体动作识别方法。使用毫米波雷达进行人体动作数据的采集,将采集到的数据进行同步压缩短时傅里叶变换得到其时频图;然后使用卷积神经网络对不同动作进行微多普勒特征提取并分类。在数据采集部分,使用毫米波雷达进行数据采集,有效地避免了外界因素的影响;在时频分析部分,使用窗函数优化的同步压缩短时傅里叶变换提高了时频聚集性。实验结果表明,该人体动作识别系统对不同人体动作的识别率可达到91.7%。 展开更多
关键词 人体动作识别 毫米波雷达 同步压缩 短时傅里叶变换 数据采集 特征提取 时频分析
下载PDF
Rolling bearing fault diagnostics based on improved data augmentation and ConvNet
9
作者 KULEVOME Delanyo Kwame Bensah WANG Hong WANG Xuegang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2023年第4期1074-1084,共11页
Convolutional neural networks(CNNs)are well suited to bearing fault classification due to their ability to learn discriminative spectro-temporal patterns.However,gathering sufficient cases of faulty conditions in real... Convolutional neural networks(CNNs)are well suited to bearing fault classification due to their ability to learn discriminative spectro-temporal patterns.However,gathering sufficient cases of faulty conditions in real-world engineering scenarios to train an intelligent diagnosis system is challenging.This paper proposes a fault diagnosis method combining several augmentation schemes to alleviate the problem of limited fault data.We begin by identifying relevant parameters that influence the construction of a spectrogram.We leverage the uncertainty principle in processing time-frequency domain signals,making it impossible to simultaneously achieve good time and frequency resolutions.A key determinant of this phenomenon is the window function's choice and length used in implementing the shorttime Fourier transform.The Gaussian,Kaiser,and rectangular windows are selected in the experimentation due to their diverse characteristics.The overlap parameter's size also influences the outcome and resolution of the spectrogram.A 50%overlap is used in the original data transformation,and±25%is used in implementing an effective augmentation policy to which two-stage regular CNN can be applied to achieve improved performance.The best model reaches an accuracy of 99.98%and a cross-domain accuracy of 92.54%.When combined with data augmentation,the proposed model yields cutting-edge results. 展开更多
关键词 bearing failure short-time fourier transform prognostics and health management data augmentation fault diagnosis
下载PDF
Wind turbine clutter mitigation using morphological component analysis with group sparsity
10
作者 WAN Xiaoyu SHEN Mingwei +1 位作者 WU Di ZHU Daiyin 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2023年第3期714-722,共9页
To address the problem that dynamic wind turbine clutter(WTC)significantly degrades the performance of weather radar,a WTC mitigation algorithm using morphological component analysis(MCA)with group sparsity is studied... To address the problem that dynamic wind turbine clutter(WTC)significantly degrades the performance of weather radar,a WTC mitigation algorithm using morphological component analysis(MCA)with group sparsity is studied in this paper.The ground clutter is suppressed firstly to reduce the morphological compositions of radar echo.After that,the MCA algorithm is applied and the window used in the short-time Fourier transform(STFT)is optimized to lessen the spectrum leakage of WTC.Finally,the group sparsity structure of WTC in the STFT domain can be utilized to decrease the degrees of freedom in the solution,thus contributing to better estimation performance of weather signals.The effectiveness and feasibility of the proposed method are demonstrated by numerical simulations. 展开更多
关键词 weather radar wind turbine clutter(WTC) morphological component analysis(MCA) short-time fourier transform(STFT) group sparsity
下载PDF
同步压缩短时傅里叶变换和时频脊线增强识别结构固有频率 被引量:1
11
作者 邓嘉瑞 方先慧 《四川建筑科学研究》 2023年第2期33-39,共7页
根据实测结构振动响应准确地提取结构模态特征是评估结构健康状态的关键一环。将同步压缩短时傅里叶变换和时频脊线增强方法相结合,提出了一种新的结构自振频率识别方法。该方法首先对振动响应信号进行了同步压缩短时傅里叶变换,锐化了... 根据实测结构振动响应准确地提取结构模态特征是评估结构健康状态的关键一环。将同步压缩短时傅里叶变换和时频脊线增强方法相结合,提出了一种新的结构自振频率识别方法。该方法首先对振动响应信号进行了同步压缩短时傅里叶变换,锐化了信号的时频表达,然后采用脊线增强方法对锐化后的时频图提取了峰值序列,获得了结构最可能的能量波动路径。通过对包含间断信号和模态混叠信号的仿真信号以及包含不同信噪比噪声的仿真信号进行验证,证明了同步压缩短时傅里叶变换的可靠性和准确性。接着,通过对比一个4自由度系统在地震作用下的结构响应,分析了不同变换方法的脊线增强效果,进一步验证了脊线增强方法对理解结构能量耗散路径和识别结构自振频率的有效性。 展开更多
关键词 同步压缩短时傅里叶变换 时频脊线增强 固有频率 能量波动
下载PDF
基于短时分数阶傅里叶变换的时频分析方法 被引量:35
12
作者 庞存锁 刘磊 单涛 《电子学报》 EI CAS CSCD 北大核心 2014年第2期347-352,共6页
本文研究了短时分数阶傅里叶变换(STFRFT)时频分析方法的分辨率精度和算法性能.首先,文中给出了一种STFRFT时频分辨率的数学计算表达式,其有利于时频分辨率的量化比较,仿真结果表明该理论量化值与观察值基本吻合;其次,针对算法运算量大... 本文研究了短时分数阶傅里叶变换(STFRFT)时频分析方法的分辨率精度和算法性能.首先,文中给出了一种STFRFT时频分辨率的数学计算表达式,其有利于时频分辨率的量化比较,仿真结果表明该理论量化值与观察值基本吻合;其次,针对算法运算量大的问题,提出了一种STFRFT的快速计算方法,它较传统的穷举搜索方法运算量约降低1个数量级;最后,给出了算法估计误差的理论分析并运用该方法对多目标信号进行了分析,仿真表明该方法可有效抑制交叉项和解决多分量时频信号的分离问题. 展开更多
关键词 短时分数阶傅立叶变换 时频分析 阶次估计 多目标信号分离 short-time FRACTIONAL fourier transform (STFRFT)
下载PDF
基于高阶傅里叶同步挤压变换与希尔伯特变换的次同步振荡分析 被引量:4
13
作者 魏东辉 房俊龙 《高电压技术》 EI CAS CSCD 北大核心 2022年第3期1192-1201,共10页
针对次同步振荡分量提取存在噪声干扰和模态混叠问题,提出一种结合高阶傅里叶同步挤压变换(high-order Fourier synchrosqueezed transform,HFSST)与希尔伯特变换(Hilbert transform,HT)的次同步振荡分析方法。该方法在傅里叶同步挤压变... 针对次同步振荡分量提取存在噪声干扰和模态混叠问题,提出一种结合高阶傅里叶同步挤压变换(high-order Fourier synchrosqueezed transform,HFSST)与希尔伯特变换(Hilbert transform,HT)的次同步振荡分析方法。该方法在傅里叶同步挤压变换(Fourier syn-chrosqueezed transform,FSST)基础上,通过信号幅值和相位的高阶泰勒展开,定义一种调制算子对瞬时频率估计进行修正,从而提高信号时频分布的能量聚集程度和重构精度。然后,将所提方法应用于次同步振荡分析中,利用该方法对次同步振荡进行时频分析和模态分解,并与HT结合得到各分量振荡参数。通过仿真实验和实测数据分析,并与短时傅里叶变换(short-time Fourier transform,STFT)、重排方法(reassignment method,RM)、经验模态分解(empirical mode decomposition,EMD)等对比,结果表明:所提方法能抑制噪声干扰,得到更好的次同步振荡时频分布,同时可实现多分量的次同步振荡模态分解,准确辨识次同步振荡参数,对电力系统安全稳定运行具有一定的参考意义。 展开更多
关键词 傅里叶同步挤压变换 时频分布 模态分解 次同步振荡 瑞利熵 调制算子 谐波提取
下载PDF
基于FSST和D-K聚类的次同步振荡分析 被引量:2
14
作者 阳育德 莫富钧 +1 位作者 卢建洛 覃智君 《广西大学学报(自然科学版)》 CAS 北大核心 2021年第4期948-961,共14页
为了更准确地识别电力系统次同步振荡的模态数量和频率,以及时进行频率定位和重构,需要提高次同步实测数据的模态辨识的结果精度。针对DBSCAN聚类可以被应用于划分类簇但无法自动计算类簇中心,以及Kmeans聚类需提前确定类簇数量才能计... 为了更准确地识别电力系统次同步振荡的模态数量和频率,以及时进行频率定位和重构,需要提高次同步实测数据的模态辨识的结果精度。针对DBSCAN聚类可以被应用于划分类簇但无法自动计算类簇中心,以及Kmeans聚类需提前确定类簇数量才能计算类簇中心的特点,提出了一种基于傅里叶同步挤压变换和DBSCAN-Kmeans混合聚类(以下简称D-K聚类)的电力系统次同步振荡分析法。模拟数值信号和IEEE次同步谐振(SSR)标准模型算例的仿真实验数据表明,FSST方法能被用于分离距离较近的相邻信号模态。通过算例分析,验证了结合FSST和D-K聚类的次同步振荡分析方法可以避免FSST方法无法自动获取模态的缺陷,且参数辨识结果有较高的精度。 展开更多
关键词 傅里叶同步挤压变换 DBSCAN-Kmeans混合聚类 次同步振荡 模态辨识 参数辨识
下载PDF
基于傅里叶同步挤压变换和希尔伯特变换的谐波间谐波检测分析 被引量:38
15
作者 童涛 张新燕 +3 位作者 刘博文 杨璐璐 张家军 高亮 《电网技术》 EI CSCD 北大核心 2019年第11期4200-4208,共9页
针对电网谐波间谐波提取易发生模态混叠和易受噪声干扰等问题,首次提出一种基于傅里叶同步挤压变换(Fourier-based synchrosqueezing transform,FSST)和希尔伯特变换(Hilbert transform,HT)的谐波间谐波检测方法。该方法利用FSST将信号... 针对电网谐波间谐波提取易发生模态混叠和易受噪声干扰等问题,首次提出一种基于傅里叶同步挤压变换(Fourier-based synchrosqueezing transform,FSST)和希尔伯特变换(Hilbert transform,HT)的谐波间谐波检测方法。该方法利用FSST将信号分解为一组内蕴模态类函数(intrinsic mode type functions,IMTs)分量,再利用HT提取各分量的瞬时频率和瞬时幅值,从而完成谐波间谐波的检测。为提高检测精度,提出利用调制算子修正信号瞬时频率来提高各IMTs分量重构精度,进而提出一种改进傅里叶同步挤压变换(improvedFourier-basedsynchrosqueezingtransform,IFSST)。与传统方法相比,所提方法能有效抑制模态混叠和噪声干扰,能准确提取各谐波间谐波。最后,仿真实验和实测数据验证了该方法的有效性和准确性。 展开更多
关键词 傅里叶同步挤压变换 希尔伯特黄变换 谐波间谐波检测 次同步振荡 瞬时频率估计
下载PDF
基于同步挤压改进短时傅里叶变换的谱分解应用 被引量:9
16
作者 严海滔 龚齐森 +2 位作者 周怀来 牛聪 严帝 《大庆石油地质与开发》 CAS CSCD 北大核心 2019年第3期122-131,共10页
随着油气勘探开发深度的增加以及地震数据采集受外界的干扰严重,使得地震资料处理解释人员对于含油气层的识别也变得更加困难。基于时频分析的地震谱分解技术已经广泛应用于油气储层预测中;但由于短时傅里叶变换、小波变换、S变换、Wign... 随着油气勘探开发深度的增加以及地震数据采集受外界的干扰严重,使得地震资料处理解释人员对于含油气层的识别也变得更加困难。基于时频分析的地震谱分解技术已经广泛应用于油气储层预测中;但由于短时傅里叶变换、小波变换、S变换、Wigner-Ville分布等传统时频分析方法受自身窗函数的约束,使得它们的时频聚焦性不高或交叉项干扰,导致油气检测结果存在很大的误差。针对这一难题,为了实现准确的储层预测,通过对短时傅里叶窗函数进行拓展,并且对拓展后的短时傅里叶变换结果执行挤压,将挤压结果重排放置于信号的瞬时频率处,提出了同步挤压改进短时傅里叶变换。信号分析表明同步挤压改进短时傅里叶变换具有更高的时频聚焦能力。将同步挤压改进短时傅里叶变换与地震谱分解技术结合,并将其运用于实际地震资料,结果表明,该方法可以对含油气层进行精细刻画,频率异常特征十分显著,对于含油气性检测具有很强的实用性。 展开更多
关键词 谱分解 改进短时傅里叶变换 同步挤压 储层预测
下载PDF
基于同步挤压变换的电力系统谐波分析 被引量:3
17
作者 童涛 张新燕 +2 位作者 孔德钱 古超帆 李昌陵 《太阳能学报》 CSCD 北大核心 2021年第8期49-56,共8页
为解决短时傅里叶变换(short-time Fourier transform,STFT)和连续小波变换(continuous wavelet transform,CWT)分析复杂电力系统谐波的不足,提出用于谐波分析的傅里叶同步挤压变换(Fourier-based synchrosqueezing transform,FSST)和... 为解决短时傅里叶变换(short-time Fourier transform,STFT)和连续小波变换(continuous wavelet transform,CWT)分析复杂电力系统谐波的不足,提出用于谐波分析的傅里叶同步挤压变换(Fourier-based synchrosqueezing transform,FSST)和同步挤压小波变换(synchrosqueezing wavelet transform,SWT)方法。这2种方法分别利用STFT和CWT对电力谐波信号进行时频分析,并对谐波瞬时频率同步挤压锐化,得到更精细的谐波时频曲线;然后利用其可逆性将电力谐波分解为一组内蕴模态类函数(intrinsic mode type functions,IMTs)分量,完成谐波各分量的提取。通过对比研究发现,FSST更适合分析线性调频电力谐波,SWT更适合分析非线性调频电力谐波。实际应用结果表明,与希尔伯特黄变换相比,同步挤压变换能有效抑制模态混叠和噪声干扰,能有效提取各谐波特征信息。 展开更多
关键词 谐波分析 挤压 模态分析 傅里叶同步挤压变换 同步挤压小波变换
下载PDF
窗口伸缩优化的同步压缩算法及其在变转速工况瞬时频率估计上的应用 被引量:1
18
作者 吴红安 吕勇 +1 位作者 易灿灿 袁锐 《中国机械工程》 EI CAS CSCD 北大核心 2022年第1期34-44,共11页
针对传统时频分析方法的固定窗在分析非线性调频信号时存在时频聚集性不高等问题,在短时傅里叶变换基础上引入同步压缩理论,利用信号的局部信息特征,提出一种窗口伸缩优化的时频同步压缩变换算法,并在此基础上推导出二阶及高阶的窗口伸... 针对传统时频分析方法的固定窗在分析非线性调频信号时存在时频聚集性不高等问题,在短时傅里叶变换基础上引入同步压缩理论,利用信号的局部信息特征,提出一种窗口伸缩优化的时频同步压缩变换算法,并在此基础上推导出二阶及高阶的窗口伸缩优化的同步压缩变换算法。该方法能够兼顾同步压缩变换和重排的优势,进一步锐化时频脊线,从而增强时频表示的能量聚集水平,提高信号时频分辨率。鉴于信号的先验知识未知,以最小信息熵准则为依据对截取信号窗口进行伸缩优化,利用熵值对时变窗口参数进行估计从而确定各时刻的最优窗宽。仿真信号和实际信号分析结果验证了该方法的有效性。 展开更多
关键词 时频分析 多分量非平稳信号 短时傅里叶变换 同步压缩变换 窗口伸缩优化
下载PDF
FM interference suppression for PRC-CW radar based on adaptive STFT and time-varying filtering 被引量:9
19
作者 Zhao Zhao Xiangquan Shi 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2010年第2期219-223,共5页
The influence of frequency modulation (FM) interfer- ence on correlation detection performance of the pseudo random code continuous wave (PRC-CW) radar is analyzed. It is found that the correlation output deterior... The influence of frequency modulation (FM) interfer- ence on correlation detection performance of the pseudo random code continuous wave (PRC-CW) radar is analyzed. It is found that the correlation output deteriorates greatly when the FM inter- ference power exceeds the anti-jamming limit of the radar. Accord- ing to the fact that the PRC-CW radar echo is a wideband pseudo random signal occupying the whole TF plane, while the FM in- terference only concentrates in a small portion, a new method is proposed based on adaptive short-time Fourier transform (STFT) and time-varying filtering for FM interference suppression. This method filters the received signal by using a binary mask to excise only the portion of the TF plane corrupted by the interference. Two types of interference, linear FM (LFM) and sinusoidal FM (SFM), under different signal-to-jamming ratio (S JR) are studied. It is shown that the proposed method can effectively suppress the FM interference and improve the performance of target detection. 展开更多
关键词 interference suppression frequency modulation in- terference adaptive short-time fourier transform (STFT) time- varying filtering pseudo random code continuous wave (PRC-CW) radar.
下载PDF
基于同步压缩短时傅里叶变换的微型无人机识别 被引量:3
20
作者 孙延鹏 赵越 屈乐乐 《电讯技术》 北大核心 2021年第1期69-75,共7页
针对利用雷达微多普勒效应的微型无人机识别问题,提出了一种基于同步压缩短时傅里叶变换(Synchrosqueezing Short-Time Fourier Transform,SSTFT)的分类识别方法。首先对无人机的微多普勒回波信号进行SSTFT从而获得信号时频谱,然后对时... 针对利用雷达微多普勒效应的微型无人机识别问题,提出了一种基于同步压缩短时傅里叶变换(Synchrosqueezing Short-Time Fourier Transform,SSTFT)的分类识别方法。首先对无人机的微多普勒回波信号进行SSTFT从而获得信号时频谱,然后对时频谱进行多维度特征提取获得回波信号的时频特征及频率变化特征,最后将所获得联合特征输入到支持向量机(Support Vector Machine,SVM)中进而实现无人机的分类识别。基于实际雷达数据的实验结果表明,所提无人机分类方法准确率可达到97.03%。 展开更多
关键词 微型无人机识别 微多普勒效应 同步压缩短时傅里叶变换 特征提取
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部