A Laue microdiffraction beamline(BL03HB) was constructed at the Shanghai Synchrotron Radiation Facility(SSRF).This beamline features two consecutive focusing points in two different sectors within its end station, the...A Laue microdiffraction beamline(BL03HB) was constructed at the Shanghai Synchrotron Radiation Facility(SSRF).This beamline features two consecutive focusing points in two different sectors within its end station, the first dedicated to protein crystallography and the other tailored to materials science applications. Based on a superbend dipole magnet with a magnetic field of 2.29 T, a two-stage focusing design was implemented with two sets of Kirkpatrick-Baez mirrors to achieve a micro white beam as small as 4.2 μ m ×4.3 μ m at the first sector and 0.9 μ m ×1.3 μ m at the second sector in the standard beamline operation mode at SSRF. The X-ray microbeam in the two sectors can be easily switched between monochromatic and white beams by moving a four-bounce monochromator in or out of the light path, respectively. In the protein crystallography sector, white-beam Laue microdiffraction was demonstrated to successfully determine the structure of protein crystals from only a few images of diffraction data collected by a Pilatus 2 M area detector. In the materials science sector,the white-beam Laue diffraction was collected in a reflection geometry using another Pilatus 2 M area detector, which could map the microstructural distribution on the sample surface by scanning the samples. In general, the BL03HB beamline promotes the application of Laue microdiffraction in both protein crystallography and materials science. This paper presents a comprehensive overview of the BL03HB beamline, end station, and the first commission results.展开更多
The multilayer Laue lens(MLL) is a diffractive focusing optical element which can focus hard X-rays down to the nanometer scale. In this study, a WSi_(2)/Si multilayer structure consisting of 1736 layers, with a 7.2-n...The multilayer Laue lens(MLL) is a diffractive focusing optical element which can focus hard X-rays down to the nanometer scale. In this study, a WSi_(2)/Si multilayer structure consisting of 1736 layers, with a 7.2-nm-thick outermost layer and a total thickness of 17 μm, is prepared by DC magnetron sputtering. Regarding the thin film growth rate calibration, we correct the long-term growth rate drift from 2 to 0.6%, as measured by the grazing incidence X-ray reflectivity(GIXRR). A one-dimensional line focusing resolution of 64 nm was achieved,while the diffraction efficiency was 38% of the-1 order of the MLL Shanghai Synchrotron Radiation Facility(SSRF) with the BL15U beamline.展开更多
We designed and fabricated a multilayer Laue lens (MLL) as a hard X-ray focusing device. WSi2/Si multilayers were chosen owing to their excellent optical properties and relatively sharp interface. The multilayer sam...We designed and fabricated a multilayer Laue lens (MLL) as a hard X-ray focusing device. WSi2/Si multilayers were chosen owing to their excellent optical properties and relatively sharp interface. The multilayer sample was fabricated by using direct current (DC) magnetron sputtering technology and then was sliced and thinned to form an MLL. The thickness of each layer was determined by scanning electron microscopy (SEM) image analysis with marking layers. The focusing property of the MLL was measured at Beamline 15U, Shanghai Synchrotron Facility (SSRF). One-dimensional (1D) focusing resolutions of 92 nm are obtained at photon energy of 14 keV.展开更多
The multilayer Laue lens (MLL) is a novel diffraction optics which can realize nanometer focusing of hard X-rays with high efficiency. In this paper, a 7.9 μm-thick MLL with the outmost layer thickness of 15 nm is ...The multilayer Laue lens (MLL) is a novel diffraction optics which can realize nanometer focusing of hard X-rays with high efficiency. In this paper, a 7.9 μm-thick MLL with the outmost layer thickness of 15 nm is designed based on dynamical diffraction theory. The MLL is fabricated by first depositing the depth-graded multilayer using direct current (DC) magnetron sputtering technology. Then, the multilayer sample is sliced, and both cross-sections are thinned and polished to a depth of 35–41 μm. The focusing property of the MLL is measured at the Shanghai Synchrotron Facility (SSRF). One-dimensional (1D) focusing resolutions of 205 nm and 221 nm are obtained at E=14 keV and 18 keV, respectively. It demonstrates that the fabricated MLL can focus hard X-rays into nanometer scale.展开更多
文摘A Laue microdiffraction beamline(BL03HB) was constructed at the Shanghai Synchrotron Radiation Facility(SSRF).This beamline features two consecutive focusing points in two different sectors within its end station, the first dedicated to protein crystallography and the other tailored to materials science applications. Based on a superbend dipole magnet with a magnetic field of 2.29 T, a two-stage focusing design was implemented with two sets of Kirkpatrick-Baez mirrors to achieve a micro white beam as small as 4.2 μ m ×4.3 μ m at the first sector and 0.9 μ m ×1.3 μ m at the second sector in the standard beamline operation mode at SSRF. The X-ray microbeam in the two sectors can be easily switched between monochromatic and white beams by moving a four-bounce monochromator in or out of the light path, respectively. In the protein crystallography sector, white-beam Laue microdiffraction was demonstrated to successfully determine the structure of protein crystals from only a few images of diffraction data collected by a Pilatus 2 M area detector. In the materials science sector,the white-beam Laue diffraction was collected in a reflection geometry using another Pilatus 2 M area detector, which could map the microstructural distribution on the sample surface by scanning the samples. In general, the BL03HB beamline promotes the application of Laue microdiffraction in both protein crystallography and materials science. This paper presents a comprehensive overview of the BL03HB beamline, end station, and the first commission results.
基金the National Natural Science Foundation of China(Nos.12005250,U1932167,and U1432244).
文摘The multilayer Laue lens(MLL) is a diffractive focusing optical element which can focus hard X-rays down to the nanometer scale. In this study, a WSi_(2)/Si multilayer structure consisting of 1736 layers, with a 7.2-nm-thick outermost layer and a total thickness of 17 μm, is prepared by DC magnetron sputtering. Regarding the thin film growth rate calibration, we correct the long-term growth rate drift from 2 to 0.6%, as measured by the grazing incidence X-ray reflectivity(GIXRR). A one-dimensional line focusing resolution of 64 nm was achieved,while the diffraction efficiency was 38% of the-1 order of the MLL Shanghai Synchrotron Radiation Facility(SSRF) with the BL15U beamline.
基金Supported by National Natural Science Foundation of China(U1432244,11375131)Major State Basic Research Development Program(2011CB922203)
文摘We designed and fabricated a multilayer Laue lens (MLL) as a hard X-ray focusing device. WSi2/Si multilayers were chosen owing to their excellent optical properties and relatively sharp interface. The multilayer sample was fabricated by using direct current (DC) magnetron sputtering technology and then was sliced and thinned to form an MLL. The thickness of each layer was determined by scanning electron microscopy (SEM) image analysis with marking layers. The focusing property of the MLL was measured at Beamline 15U, Shanghai Synchrotron Facility (SSRF). One-dimensional (1D) focusing resolutions of 92 nm are obtained at photon energy of 14 keV.
基金Supported by National Natural Science Foundation of China (10825521)973 Project (2011CB922203)Natural Science Foundation of Shanghai (09ZR1434300)
文摘The multilayer Laue lens (MLL) is a novel diffraction optics which can realize nanometer focusing of hard X-rays with high efficiency. In this paper, a 7.9 μm-thick MLL with the outmost layer thickness of 15 nm is designed based on dynamical diffraction theory. The MLL is fabricated by first depositing the depth-graded multilayer using direct current (DC) magnetron sputtering technology. Then, the multilayer sample is sliced, and both cross-sections are thinned and polished to a depth of 35–41 μm. The focusing property of the MLL is measured at the Shanghai Synchrotron Facility (SSRF). One-dimensional (1D) focusing resolutions of 205 nm and 221 nm are obtained at E=14 keV and 18 keV, respectively. It demonstrates that the fabricated MLL can focus hard X-rays into nanometer scale.