In the light of Synchrotron Radiation X-ray Tomographic Microscopy (SRXTM), the internal structure of Markuelia hunanensis is revealed. In one example, vitrification and peeling show the annuli hidden under the chor...In the light of Synchrotron Radiation X-ray Tomographic Microscopy (SRXTM), the internal structure of Markuelia hunanensis is revealed. In one example, vitrification and peeling show the annuli hidden under the chorion. Sectioning and 3-D reconstruction display an intact digestive tract from the inverted introvert to the terminal anus. The inverted introvert forms a rugby cavum. The following digestive tract is rope-like coiling, parallel to the body axis, about 650 μm in length, and uniform in diameter (-80 μm). An exquisitely preserved pipe-like structure is hidden in the middle of the rope-like structure, diameter 20--40 lam, with a length of -120 μm. We interpret this pipe-like structure as the possible epidermis of the gut and its surroundings as the possible residue of musculature, similar to that in Priapulans. The two symmetrical rod-shape structures connecting the body wall and digestive tract are interpreted as the possible retractor muscles. After comparing the well preserved Left-form and Right-form Body of Markuelia, we suggest that they may represent a dimorphism. Counted directly, one sample of Markuelia hunanensis possesses 62 annulations and the other 68.展开更多
This study investigated the formulation mechanism of microspheres via internal surfactant distribution. Eudragit L100 based microspheres loaded with bovine serum albumin were prepared by solid in oil in oil emulsion s...This study investigated the formulation mechanism of microspheres via internal surfactant distribution. Eudragit L100 based microspheres loaded with bovine serum albumin were prepared by solid in oil in oil emulsion solvent evaporation method using acetone and liquid paraffin system containing sucrose stearate as a surfactant. The fabricated microspheres were evaluated for encapsulation efficiency, particle size, production yield, and in vitro release characteristics. The internal structures of microspheres were characterized using synchrotron radiation X-ray microcomputed tomography(SR-μCT). The enhanced contrast made the sucrose stearate distinguished from Eudragit to have its three dimensional(3D) distribution. Results indicated that the content and concentration determined the state of sucrose stearate and had significant influences on the release kinetics of protein. The dispersity of sucrose stearate was the primary factor that controlled the structure of the microspheres and further affected the encapsulation efficiency, effective drug loading, as well as in vitro release behavior. In conclusion, the 3D internal distribution of surfactant in microspheres and its effects on protein release behaviors have been revealed for the first time. The highly resolved 3D architecture provides new evidence for the deep understanding of the microsphere formation mechanism.展开更多
The solidification process of metals plays a critical role in their final microstructure and, correspondingly, in their performance. It is therefore important to probe the solidification behavior of metals using advan...The solidification process of metals plays a critical role in their final microstructure and, correspondingly, in their performance. It is therefore important to probe the solidification behavior of metals using advanced in situ techniques. Synchrotron radiation X-ray imaging is one of the most powerful techniques to observe the solidification process of metals directly. Here, we review the development of the solidification apparatus, including the directional solidification device, resistance furnace, multi-field coupling device, semisolid forming device, aerodynamic levitation apparatus, and laser additive manufacturing apparatus. We highlight the recent research progress on the use of synchrotron radiation X-ray imaging to reveal the solidification behavior of metals in the above circumstances. The future perspectives of synchrotron radiation X-ray imaging in metal research are discussed. Further development of this technique will contribute to improve the understanding of the solidification process of metals and other types of materials at different scales.展开更多
The contents and distributions of metal elements in the brain are closely related to neurodegenerative diseases.In this study, we examined Fe, Cu and Zn contents in the brain section associated with Parkinson‘s disea...The contents and distributions of metal elements in the brain are closely related to neurodegenerative diseases.In this study, we examined Fe, Cu and Zn contents in the brain section associated with Parkinson‘s disease(PD)using synchrotron radiation X-ray fluorescence(SRXRF). PD mouse model induced by 1-methyl-4-phenyl-1,2,3,6-terahydropyridine(MPTP) was used for the elemental analysis(e.g., Fe, Cu and Zn) in the substantia nigra pars compacta(SNpc) region of mice brain tissue samples. We found that mice in the MPTP group had higher contents of Fe, Cu and Zn in the SNpc than the control group. After treating the PD mice with rapamycin, the contents of Fe, Cu and Zn were reduced, the dopamine neurons and motor function were rescued correspondingly. The results prompted that the SRXRF provided an ideal method for tracing and analyzing the metal elements in the brain section to assess the pathological changes of PD model and the therapeutic effect of drugs.展开更多
The synchrotron X-ray double-crystal topography was employed to investigate the structure of Si/SiGe/Si deposited on SIMOX SOI. Rocking curves with three diffraction peaks were acquired before and after 180° rota...The synchrotron X-ray double-crystal topography was employed to investigate the structure of Si/SiGe/Si deposited on SIMOX SOI. Rocking curves with three diffraction peaks were acquired before and after 180° rotation of samples. Double-crystal topographs taken at the full width at half maximum (FWHM) of the three peaks differ from each other. Many defects appear in the Si layers that are likely related to the tilt between SOI and epitaxial layers.展开更多
Synchrotron radiation X-ray fluorescence (SRXRF) microprobe was used to ananlyse altered mineral muscovite and its surrounding feldspar in Yuerya gold deposit. The major, minor and trace elements of the two minerals w...Synchrotron radiation X-ray fluorescence (SRXRF) microprobe was used to ananlyse altered mineral muscovite and its surrounding feldspar in Yuerya gold deposit. The major, minor and trace elements of the two minerals were detected and analyzed. SRXRF analysis showed that the Yuerya muscovite had a complex chemical composition, containing K, Fe, Ca, Ti, Cr, Mn, Co, Cu, Zn and many trace or ultra-trace elements. Since muscovite resulted from the alteration of hydrothermal ore fluid acting on feldspar (plagioclase), the difference of chemical composition between the two minerals shows the components of ore fluid, which are characterized by the enrichment of alkaline and alkaline-earth metal elements K, Ca and ore-associated elements Fe, Cu, Zn. And gold, silver and platinum, invisible under microscope, were detected in some areas of muscovite, but not found in feldspar. Espe- cially platinum, a mantle material, is rarely seen in the earth crust but now found in the gold deposit of magmatic sources; its appearance approves the idea of mantle flux participating in the gold mineralization, which suggests that the tectonic event controlling gold mineralization in the Yuerya district is a mantle phenomenon.展开更多
The parasitic hydrogen evolution reaction(HER)in the negative half-cell of vanadium redox flow batteries(VRFBs)causes severe efficiency losses.Thus,a deeper understanding of this process and the accompanying bubble fo...The parasitic hydrogen evolution reaction(HER)in the negative half-cell of vanadium redox flow batteries(VRFBs)causes severe efficiency losses.Thus,a deeper understanding of this process and the accompanying bubble formation is crucial.This benchmarking study locally analyzes the bubble distribution in thick,porous electrodes for the first time using deep learning-based image segmentation of synchrotron X-ray micro-tomograms.Each large three-dimensional data set was processed precisely in less than one minute while minimizing human errors and pointing out areas of increased HER activity in VRFBs.The study systematically varies the electrode potential and material,concluding that more negative electrode potentials of-200 m V vs.reversible hydrogen electrode(RHE)and lower cause more substantial bubble formation,resulting in bubble fractions of around 15%–20%in carbon felt electrodes.Contrarily,the bubble fractions stay only around 2%in an electrode combining carbon felt and carbon paper.The detected areas with high HER activity,such as the border subregion with more than 30%bubble fraction in carbon felt electrodes,the cutting edges,and preferential spots in the electrode bulk,are potential-independent and suggest that larger electrodes with a higher bulk-to-border ratio might reduce HER-related performance losses.The described combination of electrochemical measurements,local X-ray microtomography,AI-based segmentation,and 3D morphometric analysis is a powerful and novel approach for local bubble analysis in three-dimensional porous electrodes,providing an essential toolkit for a broad community working on bubble-generating electrochemical systems.展开更多
This study presents a new method for characterizing the thermal lattice deformation of a monochromator with high precision under service conditions and first reports the operando measurements of nanoscale thermal latt...This study presents a new method for characterizing the thermal lattice deformation of a monochromator with high precision under service conditions and first reports the operando measurements of nanoscale thermal lattice deformation on a double-crystal monochromator at different incident powers.The nanoscale thermal lattice deformation of the monochromator first crystal was obtained by analyzing the intensity of the distorted DuMond diagrams.DuMond diagrams of the 333 diffraction index,sensitive to lattice deformation,were obtained directly using a 2D detector and an analyzer crystal orthogonal to the monochromator.With increasing incident power and power density,the maximum height of the lattice deformation increased from 3.2 to 18.5 nm,and the deformation coefficient of the maximum height increased from 1.1 to 3.2 nm/W.The maximum relative standard deviation was 4.2%,and the maximum standard deviation was 0.1 nm.Based on the measured thermal deformations,the flux saturation phenomenon and critical point for the linear operation of the monochromator were predicted with increasing incident power.This study provides a simple solution to the problem of the lower precision of synchrotron radiation monochromator characterizations compared to simulations.展开更多
The relative intensities of L-subshell x-ray fluorescence(XRF)for elements with atomic numbers 62≤Z≤83 were measured at two excitation energies,18 keV and 23 keV,using a synchrotron radiation source at a beamline of...The relative intensities of L-subshell x-ray fluorescence(XRF)for elements with atomic numbers 62≤Z≤83 were measured at two excitation energies,18 keV and 23 keV,using a synchrotron radiation source at a beamline of the Synchrotron Light Center for Experimental Science and Applications in the Middle East(SESAME),Jordan.The experimentally measured results of the relative intensities were compared with the calculated results using the subshell fluorescence yield and the Coster-Kronig transition probabilities recommended by Campbell and the values based on the Dirac-Hartree-Slater model by Puri.The experimental and theoretical results are in agreement.In this work,L XRF relative intensities for the elements Sm,Gd,Tb,Er,Ta,W,Re,Hg,Pb and Bi at energies of 18 keV and 23 keV were measured.展开更多
High-entropy alloys(HEAs)possess outstanding features such as corrosion resistance,irradiation resistance,and good mechan-ical properties.A few HEAs have found applications in the fields of aerospace and defense.Exten...High-entropy alloys(HEAs)possess outstanding features such as corrosion resistance,irradiation resistance,and good mechan-ical properties.A few HEAs have found applications in the fields of aerospace and defense.Extensive studies on the deformation mech-anisms of HEAs can guide microstructure control and toughness design,which is vital for understanding and studying state-of-the-art structural materials.Synchrotron X-ray and neutron diffraction are necessary techniques for materials science research,especially for in situ coupling of physical/chemical fields and for resolving macro/microcrystallographic information on materials.Recently,several re-searchers have applied synchrotron X-ray and neutron diffraction methods to study the deformation mechanisms,phase transformations,stress behaviors,and in situ processes of HEAs,such as variable-temperature,high-pressure,and hydrogenation processes.In this review,the principles and development of synchrotron X-ray and neutron diffraction are presented,and their applications in the deformation mechanisms of HEAs are discussed.The factors that influence the deformation mechanisms of HEAs are also outlined.This review fo-cuses on the microstructures and micromechanical behaviors during tension/compression or creep/fatigue deformation and the application of synchrotron X-ray and neutron diffraction methods to the characterization of dislocations,stacking faults,twins,phases,and intergrain/interphase stress changes.Perspectives on future developments of synchrotron X-ray and neutron diffraction and on research directions on the deformation mechanisms of novel metals are discussed.展开更多
Flexible solid-state cooling devices with high efficiency are attracted to ferroelectric polymers with excellent negative electrocaloric(EC)effects.It is challenging to obtain a large negative EC effect in ferroelectr...Flexible solid-state cooling devices with high efficiency are attracted to ferroelectric polymers with excellent negative electrocaloric(EC)effects.It is challenging to obtain a large negative EC effect in ferroelectric polymers due to the lack of tunable techniques.A giant negative EC response was obtained in the poly(vinylidene fluoride-trifluoroethylene)copolymers(P(VDF-TrFE),70/30,in mole ratio)irra-diated with high-energy X-ray.The irradiated P(VDF-TrFE)films showed an adiabatic temperature change of-13.5 K at 40 MV/m under a dose of 5 Mrad(1 Mrad=10^(4) J/kg)obtained by the indirect method.This significant negative EC effect is attributed to the enhancement of crystalline due to the entry of polymer molecules into the amorphous to crystalline structure and the reduction of heat ca-pacity due to the increase of crosslinking.In addition,X-ray irradiation improves the dielectric coefficient from 15 to 22.This research indicates that irradiation can modify the negative EC properties of ferro-electric polymers for solid-state cooling.展开更多
BL10U2 is an undulator-based macromolecular crystallography(MX)beamline located at the 3.5-GeV Shanghai Synchrotron Radiation Facility.BL10U2 is specifically designed for conducting routine and biosafety level-2(BSL-2...BL10U2 is an undulator-based macromolecular crystallography(MX)beamline located at the 3.5-GeV Shanghai Synchrotron Radiation Facility.BL10U2 is specifically designed for conducting routine and biosafety level-2(BSL-2)MX experiments utilizing high-flux tunable X-rays with energies from 7 to 18 keV,providing a beam spot size of 20μm(horizontal)×10μm(vertical)at the sample point.Certification by the Shanghai Pudong Municipal Health Commission confirmed the capability to perform BSL-2 MX experiments.The beamline is currently equipped with an Eiger X 16 M detector and two newly developed in-house high-precision diffractometers that can be switched to perform conventional or in situ crystal diffraction experiments.An automatic sample changer developed in-house allows fast sample exchange in less than 30 s,supporting high-throughput MX experimentation and rapid crystal screening.Data collection from both the diffractometer and detector was controlled by an in-house developed data collection software(Finback)with a user-friendly interface for convenient operation.This study presents a comprehensive overview of the facilities,experimental methods,and performance characteristics of the BL10U2 beamline.展开更多
Macromolecular crystallography beamline BL17U1 at the Shanghai Synchrotron Radiation Facility has been relocated,upgraded,and given a new ID(BL02U1).It now delivers X-rays in the energy range of 6–16 keV,with a focus...Macromolecular crystallography beamline BL17U1 at the Shanghai Synchrotron Radiation Facility has been relocated,upgraded,and given a new ID(BL02U1).It now delivers X-rays in the energy range of 6–16 keV,with a focused beam of 11.6μm×4.8μm and photon flux greater than 1012 phs/s.The high credibility and stability of the beam and good timing synchronization of the equipment significantly improve the experimental efficiency.Since June 2021,when it officially opened to users,over 4200 h of beamtime have been provided to over 200 research groups to collect data at the beamline.Its good performance and stable operation have led to the resolution of several structures based on data collected at the beamline.展开更多
The effects of ionizing and displacement irradiation of high-energy x-ray and 2-MeV proton on GaN thin films were investigated and compared in this study.The electrical properties of both P-GaN and N-GaN,separated fro...The effects of ionizing and displacement irradiation of high-energy x-ray and 2-MeV proton on GaN thin films were investigated and compared in this study.The electrical properties of both P-GaN and N-GaN,separated from power devices,were gauged for fundamental analysis.It was found that the electrical properties of P-GaN were improved as a consequence of the disruption of the Mg-H bond induced by high-dose x-ray irradiation,as indicated by the Hall and circular transmission line model.Specifically,under a 100-Mrad(Si)x-ray dose,the specific contact resistance pc of P-GaN decreased by 30%,and the hole carrier concentration increased significantly.Additionally,the atom displacement damage effect of a 2-MeV proton of 1×10^(13)p/cm^(2)led to a significant degradation of the electrical properties of P-GaN,while those of N-GaN remained unchanged.P-GaN was found to be more sensitive to irradiation than N-GaN thin film.The effectiveness of x-ray irradiation in enhancing the electrical properties of P-GaN thin films was demonstrated in this study.展开更多
The synchrotron radiation X-ray diffraction technique developed for in situ study ahigh pressure and temperature has also been used to investigate microscopic mineral inclusionsin ultrahigh-pressure metamorphic rocks ...The synchrotron radiation X-ray diffraction technique developed for in situ study ahigh pressure and temperature has also been used to investigate microscopic mineral inclusionsin ultrahigh-pressure metamorphic rocks and deep-mantle samples. Present study added twomore examples of successful utilization of synchrotron radiation X-ray diffraction technique for insitu investigations of fine-grained (0.5―30 μm in size) minerals in very thin shock melt veins othe Suizhou meteorite: ( i ) X-ray diffraction measurement of extremely small-sized vein matrixminerals, and (ii) identification of the micron-sized new mineral tuite embedded in the vein matrixIt has been revealed that the fine-grained vein matrix consists of well crystallized garnet, kamacite and troilite, and the powder diffraction pattern consisting of 17 lines with d-values, intensities( I ), relative intensities (I/Io) and Miller indices, as well as the cell parameters for the new mineratuite has also been successfully obtained. The result of present investigations has enriched thecontent of dynamic high-pressure mineralogy and that of Earth’s mantle geochemistry.展开更多
Synchrotron X-ray radiography was used to carry out an in-situ observation of the hydrogen bubble evolution in the liquid Al/solid Ni interconnection. The individual bubble mainly grows in a stochastic way during heat...Synchrotron X-ray radiography was used to carry out an in-situ observation of the hydrogen bubble evolution in the liquid Al/solid Ni interconnection. The individual bubble mainly grows in a stochastic way during heating. The size distribution for groups of bubbles follows a Gaussian distribution in the early stage and Lifshitz-Slyozov-Wagner(LSW) diffusion controlled distribution in the final stage. The intermetallic compounds(IMCs) first form during solidification, following by the hydrogen bubbles. The bubbles between two adjacent Al3Ni grains grow unidirectionally along the liquid channel, with the bottom being impeded by the Al3Ni phase and the radius of the growth front being smaller. For the bubbles at triple junctions, they grow along the liquid channel and the crack with morphology transition.展开更多
The aging behavior of Al-Cu-Mg-Ag alloys with high Cu/Mg was studied by transmission electron microscopy (TEM) and small-angle X-ray scattering (SAXS) using synchrotron radiation. TEM study reveals that the major stre...The aging behavior of Al-Cu-Mg-Ag alloys with high Cu/Mg was studied by transmission electron microscopy (TEM) and small-angle X-ray scattering (SAXS) using synchrotron radiation. TEM study reveals that the major strengthening phases of the alloy after aging at 160?C for 10 h are Ω and less θ′. SAXS study shows that the scattering patterns are composed of several concentric circles at the beginning of aging process, which is replaced by the butterfly-wings scattering patterns with the increase of aging time. The butterfly-wings scattering patterns are composed of several branches. The angles between the branches are roughly equal to that between the habit planes of precipitates. The evolution of Guinier radius with aging time indicates the good coarsening resistance of the precipitates. The evolution of integrated intensity is consistent with the classical two-step precipitation process.展开更多
According to intensity distribution of the synchrotron radiation source focused by a toroidal mirror at the Beijing synchrotron radiation biological macromolecule station, theoretical modeling of the Beijing synchrotr...According to intensity distribution of the synchrotron radiation source focused by a toroidal mirror at the Beijing synchrotron radiation biological macromolecule station, theoretical modeling of the Beijing synchrotron radiation source is developed for capillary optics. Using this theoretical modeling, the influences of the configuration curve of the polycapillary X-ray lens on transmission efficiency and working distance are analyzed. The experimental results of the transmission efficiency and working distance at the biological macromolecule station are in good agreement with the theoretical results.展开更多
This article summarizes the developments of experimental techniques for high pressure x-ray diffraction(XRD) in diamond anvil cells(DACs) using synchrotron radiation. Basic principles and experimental methods for ...This article summarizes the developments of experimental techniques for high pressure x-ray diffraction(XRD) in diamond anvil cells(DACs) using synchrotron radiation. Basic principles and experimental methods for various diffraction geometry are described, including powder diffraction, single crystal diffraction, radial diffraction, as well as coupling with laser heating system. Resolution in d-spacing of different diffraction modes is discussed. More recent progress, such as extended application of single crystal diffraction for measurements of multigrain and electron density distribution, timeresolved diffraction with dynamic DAC and development of modulated heating techniques are briefly introduced. The current status of the high pressure beamline at BSRF(Beijing Synchrotron Radiation Facility) and some results are also presented.展开更多
Background: Nickel-induced allergic contact dermatitis (Ni-ACD) is a global health problem. More detailed knowledge on the skin uptake of haptens is required. This study aimed to investigate the penetration process an...Background: Nickel-induced allergic contact dermatitis (Ni-ACD) is a global health problem. More detailed knowledge on the skin uptake of haptens is required. This study aimed to investigate the penetration process and distribution of nickel in skin tissues with late phase and early phase of Ni-ACD to understand the mechanisms of metal allergy. Methods: Forty Hartley guinea pigs were divided into four groups according to the NiSO4 sensitizing concentration and the NiSO4 challenged concentration: the 5% NiSO4-group, 5% to 10%(sensitization-challenge;late phase group);10% NiSO4-group, 10% to 10%(sensitization-challenge;early-phase group);and the positive and negative controls. Pathological biopsies were performed on each group. The depth profile of nickel element concentration in the skin of guinea pigs was detected by synchrotron radiation micro X-ray fluorescence spectroscopy (SR-μ-XRF) and micro X-ray absorption near-edge spectroscopy (μ-XANES). Results: In each section, the nickel element concentration in both the 5% NiSO4-group and 10% NiSO4-group was significantly higher than that in the negative control group. In the upper 300-μm section of skin for the early phase group, the nickel element concentration was significantly higher than that in the lower section of skin. In deeper sections (>200 μm) of skin, the concentration of nickel in the early phase group was approximately equal to that in the late phase group. The curve of the late phase group was flat, which means that the nickel element concentration was distributed uniformly by SR-μ-XRF. According to the XANES data for the 10% NiSO4 metal salt solution, structural changes occurred in the skin model sample, indicating that nickel was not present in the Ni^2+ aqueous ionic state but in the nickel-binding protein. Conclusions: This study showed that the distribution of the nickel element concentration in ACD skin tissue was different between the early phase and late phase groups. The nickel element was not present in the Ni^2+ aqueous ionic state but bound with certain proteins to form a complex in the stratum corneum in ACD model tissue.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.41072006,40772008)the Research Fund for Doctoral Program of High Education(Grant No.20060001059)State Key Laboratory of Paleobiology,and Stratigraphy,Nanjing Institute of Geology and Palaeontology,Chinese Academy of Sciences(Grant No.103102)
文摘In the light of Synchrotron Radiation X-ray Tomographic Microscopy (SRXTM), the internal structure of Markuelia hunanensis is revealed. In one example, vitrification and peeling show the annuli hidden under the chorion. Sectioning and 3-D reconstruction display an intact digestive tract from the inverted introvert to the terminal anus. The inverted introvert forms a rugby cavum. The following digestive tract is rope-like coiling, parallel to the body axis, about 650 μm in length, and uniform in diameter (-80 μm). An exquisitely preserved pipe-like structure is hidden in the middle of the rope-like structure, diameter 20--40 lam, with a length of -120 μm. We interpret this pipe-like structure as the possible epidermis of the gut and its surroundings as the possible residue of musculature, similar to that in Priapulans. The two symmetrical rod-shape structures connecting the body wall and digestive tract are interpreted as the possible retractor muscles. After comparing the well preserved Left-form and Right-form Body of Markuelia, we suggest that they may represent a dimorphism. Counted directly, one sample of Markuelia hunanensis possesses 62 annulations and the other 68.
基金the financial support from the National Natural Science Foundation of China(No.81430087)the National Science and Technology Major Project(2013ZX09402103)
文摘This study investigated the formulation mechanism of microspheres via internal surfactant distribution. Eudragit L100 based microspheres loaded with bovine serum albumin were prepared by solid in oil in oil emulsion solvent evaporation method using acetone and liquid paraffin system containing sucrose stearate as a surfactant. The fabricated microspheres were evaluated for encapsulation efficiency, particle size, production yield, and in vitro release characteristics. The internal structures of microspheres were characterized using synchrotron radiation X-ray microcomputed tomography(SR-μCT). The enhanced contrast made the sucrose stearate distinguished from Eudragit to have its three dimensional(3D) distribution. Results indicated that the content and concentration determined the state of sucrose stearate and had significant influences on the release kinetics of protein. The dispersity of sucrose stearate was the primary factor that controlled the structure of the microspheres and further affected the encapsulation efficiency, effective drug loading, as well as in vitro release behavior. In conclusion, the 3D internal distribution of surfactant in microspheres and its effects on protein release behaviors have been revealed for the first time. The highly resolved 3D architecture provides new evidence for the deep understanding of the microsphere formation mechanism.
基金supported by the National Natural Science Foundation of China for Excellent Young Scholars(No.51922068)the National Natural Science Foundation of China(Nos.51821001,51904186)the fund of the State Key Laboratory of Solidification Processing in NWPU,China(No.SKLSP202102)。
文摘The solidification process of metals plays a critical role in their final microstructure and, correspondingly, in their performance. It is therefore important to probe the solidification behavior of metals using advanced in situ techniques. Synchrotron radiation X-ray imaging is one of the most powerful techniques to observe the solidification process of metals directly. Here, we review the development of the solidification apparatus, including the directional solidification device, resistance furnace, multi-field coupling device, semisolid forming device, aerodynamic levitation apparatus, and laser additive manufacturing apparatus. We highlight the recent research progress on the use of synchrotron radiation X-ray imaging to reveal the solidification behavior of metals in the above circumstances. The future perspectives of synchrotron radiation X-ray imaging in metal research are discussed. Further development of this technique will contribute to improve the understanding of the solidification process of metals and other types of materials at different scales.
基金Supported by the Ministry of Science and Technology of China(Nos.2012CB825805 and 2012CB932600)National Natural Science Foundation of China(Nos.11179004,21390414,U1232113,U1232114,U1332119 and U1432116)Youth Innovation Promotion Association of CAS
文摘The contents and distributions of metal elements in the brain are closely related to neurodegenerative diseases.In this study, we examined Fe, Cu and Zn contents in the brain section associated with Parkinson‘s disease(PD)using synchrotron radiation X-ray fluorescence(SRXRF). PD mouse model induced by 1-methyl-4-phenyl-1,2,3,6-terahydropyridine(MPTP) was used for the elemental analysis(e.g., Fe, Cu and Zn) in the substantia nigra pars compacta(SNpc) region of mice brain tissue samples. We found that mice in the MPTP group had higher contents of Fe, Cu and Zn in the SNpc than the control group. After treating the PD mice with rapamycin, the contents of Fe, Cu and Zn were reduced, the dopamine neurons and motor function were rescued correspondingly. The results prompted that the SRXRF provided an ideal method for tracing and analyzing the metal elements in the brain section to assess the pathological changes of PD model and the therapeutic effect of drugs.
文摘The synchrotron X-ray double-crystal topography was employed to investigate the structure of Si/SiGe/Si deposited on SIMOX SOI. Rocking curves with three diffraction peaks were acquired before and after 180° rotation of samples. Double-crystal topographs taken at the full width at half maximum (FWHM) of the three peaks differ from each other. Many defects appear in the Si layers that are likely related to the tilt between SOI and epitaxial layers.
文摘Synchrotron radiation X-ray fluorescence (SRXRF) microprobe was used to ananlyse altered mineral muscovite and its surrounding feldspar in Yuerya gold deposit. The major, minor and trace elements of the two minerals were detected and analyzed. SRXRF analysis showed that the Yuerya muscovite had a complex chemical composition, containing K, Fe, Ca, Ti, Cr, Mn, Co, Cu, Zn and many trace or ultra-trace elements. Since muscovite resulted from the alteration of hydrothermal ore fluid acting on feldspar (plagioclase), the difference of chemical composition between the two minerals shows the components of ore fluid, which are characterized by the enrichment of alkaline and alkaline-earth metal elements K, Ca and ore-associated elements Fe, Cu, Zn. And gold, silver and platinum, invisible under microscope, were detected in some areas of muscovite, but not found in feldspar. Espe- cially platinum, a mantle material, is rarely seen in the earth crust but now found in the gold deposit of magmatic sources; its appearance approves the idea of mantle flux participating in the gold mineralization, which suggests that the tectonic event controlling gold mineralization in the Yuerya district is a mantle phenomenon.
基金financial support through a KekuléPh.D.fellowship by the Fonds der Chemischen Industrie(FCI)support from the China Scholarship Council(No.202106950013)。
文摘The parasitic hydrogen evolution reaction(HER)in the negative half-cell of vanadium redox flow batteries(VRFBs)causes severe efficiency losses.Thus,a deeper understanding of this process and the accompanying bubble formation is crucial.This benchmarking study locally analyzes the bubble distribution in thick,porous electrodes for the first time using deep learning-based image segmentation of synchrotron X-ray micro-tomograms.Each large three-dimensional data set was processed precisely in less than one minute while minimizing human errors and pointing out areas of increased HER activity in VRFBs.The study systematically varies the electrode potential and material,concluding that more negative electrode potentials of-200 m V vs.reversible hydrogen electrode(RHE)and lower cause more substantial bubble formation,resulting in bubble fractions of around 15%–20%in carbon felt electrodes.Contrarily,the bubble fractions stay only around 2%in an electrode combining carbon felt and carbon paper.The detected areas with high HER activity,such as the border subregion with more than 30%bubble fraction in carbon felt electrodes,the cutting edges,and preferential spots in the electrode bulk,are potential-independent and suggest that larger electrodes with a higher bulk-to-border ratio might reduce HER-related performance losses.The described combination of electrochemical measurements,local X-ray microtomography,AI-based segmentation,and 3D morphometric analysis is a powerful and novel approach for local bubble analysis in three-dimensional porous electrodes,providing an essential toolkit for a broad community working on bubble-generating electrochemical systems.
基金National Natural Science Foundation of China(No.12205360)Shanghai Pilot Program for Basic Research-Chinese Academy of Science,Shanghai Branch(No.JCYJ-SHFY-2021-010).
文摘This study presents a new method for characterizing the thermal lattice deformation of a monochromator with high precision under service conditions and first reports the operando measurements of nanoscale thermal lattice deformation on a double-crystal monochromator at different incident powers.The nanoscale thermal lattice deformation of the monochromator first crystal was obtained by analyzing the intensity of the distorted DuMond diagrams.DuMond diagrams of the 333 diffraction index,sensitive to lattice deformation,were obtained directly using a 2D detector and an analyzer crystal orthogonal to the monochromator.With increasing incident power and power density,the maximum height of the lattice deformation increased from 3.2 to 18.5 nm,and the deformation coefficient of the maximum height increased from 1.1 to 3.2 nm/W.The maximum relative standard deviation was 4.2%,and the maximum standard deviation was 0.1 nm.Based on the measured thermal deformations,the flux saturation phenomenon and critical point for the linear operation of the monochromator were predicted with increasing incident power.This study provides a simple solution to the problem of the lower precision of synchrotron radiation monochromator characterizations compared to simulations.
基金supported by the Jordan University of Science and Technology(Grant No.20180167)the SESAME Synchrotron Center Jordan(Grant No.20185004)。
文摘The relative intensities of L-subshell x-ray fluorescence(XRF)for elements with atomic numbers 62≤Z≤83 were measured at two excitation energies,18 keV and 23 keV,using a synchrotron radiation source at a beamline of the Synchrotron Light Center for Experimental Science and Applications in the Middle East(SESAME),Jordan.The experimentally measured results of the relative intensities were compared with the calculated results using the subshell fluorescence yield and the Coster-Kronig transition probabilities recommended by Campbell and the values based on the Dirac-Hartree-Slater model by Puri.The experimental and theoretical results are in agreement.In this work,L XRF relative intensities for the elements Sm,Gd,Tb,Er,Ta,W,Re,Hg,Pb and Bi at energies of 18 keV and 23 keV were measured.
基金supported by the National Natural Science Foundation of China(Nos.52171098 and 51921001)the State Key Laboratory for Advanced Metals and Materials(No.2022Z-02)+1 种基金the National High-level Personnel of Special Support Program(No.ZYZZ2021001)the Fundamental Research Funds for the Central Universities(Nos.FRF-TP-20-03C2 and FRF-BD-20-02B).
文摘High-entropy alloys(HEAs)possess outstanding features such as corrosion resistance,irradiation resistance,and good mechan-ical properties.A few HEAs have found applications in the fields of aerospace and defense.Extensive studies on the deformation mech-anisms of HEAs can guide microstructure control and toughness design,which is vital for understanding and studying state-of-the-art structural materials.Synchrotron X-ray and neutron diffraction are necessary techniques for materials science research,especially for in situ coupling of physical/chemical fields and for resolving macro/microcrystallographic information on materials.Recently,several re-searchers have applied synchrotron X-ray and neutron diffraction methods to study the deformation mechanisms,phase transformations,stress behaviors,and in situ processes of HEAs,such as variable-temperature,high-pressure,and hydrogenation processes.In this review,the principles and development of synchrotron X-ray and neutron diffraction are presented,and their applications in the deformation mechanisms of HEAs are discussed.The factors that influence the deformation mechanisms of HEAs are also outlined.This review fo-cuses on the microstructures and micromechanical behaviors during tension/compression or creep/fatigue deformation and the application of synchrotron X-ray and neutron diffraction methods to the characterization of dislocations,stacking faults,twins,phases,and intergrain/interphase stress changes.Perspectives on future developments of synchrotron X-ray and neutron diffraction and on research directions on the deformation mechanisms of novel metals are discussed.
基金supported by Guangdong Basic and Applied Basic Research Foundation(2023A1515012638)Shenzhen Natural Science Funds for Distinguished Young Scholar(No.RCJC20210706091949018)+2 种基金Guangdong Provincial Key Laboratory Program(No.2021B1212040001)of the Department of Science and Technology of Guangdong Provincethe National Natural Science Foundation of China(Nos.11864046)the Basic Research Program of Yunnan Province(Nos.202001AT070064)。
文摘Flexible solid-state cooling devices with high efficiency are attracted to ferroelectric polymers with excellent negative electrocaloric(EC)effects.It is challenging to obtain a large negative EC effect in ferroelectric polymers due to the lack of tunable techniques.A giant negative EC response was obtained in the poly(vinylidene fluoride-trifluoroethylene)copolymers(P(VDF-TrFE),70/30,in mole ratio)irra-diated with high-energy X-ray.The irradiated P(VDF-TrFE)films showed an adiabatic temperature change of-13.5 K at 40 MV/m under a dose of 5 Mrad(1 Mrad=10^(4) J/kg)obtained by the indirect method.This significant negative EC effect is attributed to the enhancement of crystalline due to the entry of polymer molecules into the amorphous to crystalline structure and the reduction of heat ca-pacity due to the increase of crosslinking.In addition,X-ray irradiation improves the dielectric coefficient from 15 to 22.This research indicates that irradiation can modify the negative EC properties of ferro-electric polymers for solid-state cooling.
基金supported by the SSRF Phase-II projectNatural Science Foundation of Shanghai(Nos.21ZR1471800 and 23ZR1471200)National Natural Science Foundation of China(No.12005281)。
文摘BL10U2 is an undulator-based macromolecular crystallography(MX)beamline located at the 3.5-GeV Shanghai Synchrotron Radiation Facility.BL10U2 is specifically designed for conducting routine and biosafety level-2(BSL-2)MX experiments utilizing high-flux tunable X-rays with energies from 7 to 18 keV,providing a beam spot size of 20μm(horizontal)×10μm(vertical)at the sample point.Certification by the Shanghai Pudong Municipal Health Commission confirmed the capability to perform BSL-2 MX experiments.The beamline is currently equipped with an Eiger X 16 M detector and two newly developed in-house high-precision diffractometers that can be switched to perform conventional or in situ crystal diffraction experiments.An automatic sample changer developed in-house allows fast sample exchange in less than 30 s,supporting high-throughput MX experimentation and rapid crystal screening.Data collection from both the diffractometer and detector was controlled by an in-house developed data collection software(Finback)with a user-friendly interface for convenient operation.This study presents a comprehensive overview of the facilities,experimental methods,and performance characteristics of the BL10U2 beamline.
基金supported by the National Key Research and Development Program of China(No.2021YFC2301405)the National Natural Science Foundation of China(No.31971121)Shanghai Science and Technology Plan Project(No.21ZR14718)。
文摘Macromolecular crystallography beamline BL17U1 at the Shanghai Synchrotron Radiation Facility has been relocated,upgraded,and given a new ID(BL02U1).It now delivers X-rays in the energy range of 6–16 keV,with a focused beam of 11.6μm×4.8μm and photon flux greater than 1012 phs/s.The high credibility and stability of the beam and good timing synchronization of the equipment significantly improve the experimental efficiency.Since June 2021,when it officially opened to users,over 4200 h of beamtime have been provided to over 200 research groups to collect data at the beamline.Its good performance and stable operation have led to the resolution of several structures based on data collected at the beamline.
文摘The effects of ionizing and displacement irradiation of high-energy x-ray and 2-MeV proton on GaN thin films were investigated and compared in this study.The electrical properties of both P-GaN and N-GaN,separated from power devices,were gauged for fundamental analysis.It was found that the electrical properties of P-GaN were improved as a consequence of the disruption of the Mg-H bond induced by high-dose x-ray irradiation,as indicated by the Hall and circular transmission line model.Specifically,under a 100-Mrad(Si)x-ray dose,the specific contact resistance pc of P-GaN decreased by 30%,and the hole carrier concentration increased significantly.Additionally,the atom displacement damage effect of a 2-MeV proton of 1×10^(13)p/cm^(2)led to a significant degradation of the electrical properties of P-GaN,while those of N-GaN remained unchanged.P-GaN was found to be more sensitive to irradiation than N-GaN thin film.The effectiveness of x-ray irradiation in enhancing the electrical properties of P-GaN thin films was demonstrated in this study.
基金the National Natural Science Foundation of China(Grant No.40272028).
文摘The synchrotron radiation X-ray diffraction technique developed for in situ study ahigh pressure and temperature has also been used to investigate microscopic mineral inclusionsin ultrahigh-pressure metamorphic rocks and deep-mantle samples. Present study added twomore examples of successful utilization of synchrotron radiation X-ray diffraction technique for insitu investigations of fine-grained (0.5―30 μm in size) minerals in very thin shock melt veins othe Suizhou meteorite: ( i ) X-ray diffraction measurement of extremely small-sized vein matrixminerals, and (ii) identification of the micron-sized new mineral tuite embedded in the vein matrixIt has been revealed that the fine-grained vein matrix consists of well crystallized garnet, kamacite and troilite, and the powder diffraction pattern consisting of 17 lines with d-values, intensities( I ), relative intensities (I/Io) and Miller indices, as well as the cell parameters for the new mineratuite has also been successfully obtained. The result of present investigations has enriched thecontent of dynamic high-pressure mineralogy and that of Earth’s mantle geochemistry.
基金supported by the National Key Research and Development Program (2017YFA0403800)the National Natural Science Foundation of China (51374144, 51727802)+2 种基金the Shanghai Municipal Natural Science Foundation (13ZR1420600)Shanghai Rising-Star Program (14QA1402300)The support of synchrotron radiation phase-contrast imaging by the BL13W1 beam line of Shanghai Synchrotron Radiation Facility (SSRF), China, is gratefully acknowledged
文摘Synchrotron X-ray radiography was used to carry out an in-situ observation of the hydrogen bubble evolution in the liquid Al/solid Ni interconnection. The individual bubble mainly grows in a stochastic way during heating. The size distribution for groups of bubbles follows a Gaussian distribution in the early stage and Lifshitz-Slyozov-Wagner(LSW) diffusion controlled distribution in the final stage. The intermetallic compounds(IMCs) first form during solidification, following by the hydrogen bubbles. The bubbles between two adjacent Al3Ni grains grow unidirectionally along the liquid channel, with the bottom being impeded by the Al3Ni phase and the radius of the growth front being smaller. For the bubbles at triple junctions, they grow along the liquid channel and the crack with morphology transition.
基金financially supported by the National Natural Science Foundation of China(No.51004018)
文摘The aging behavior of Al-Cu-Mg-Ag alloys with high Cu/Mg was studied by transmission electron microscopy (TEM) and small-angle X-ray scattering (SAXS) using synchrotron radiation. TEM study reveals that the major strengthening phases of the alloy after aging at 160?C for 10 h are Ω and less θ′. SAXS study shows that the scattering patterns are composed of several concentric circles at the beginning of aging process, which is replaced by the butterfly-wings scattering patterns with the increase of aging time. The butterfly-wings scattering patterns are composed of several branches. The angles between the branches are roughly equal to that between the habit planes of precipitates. The evolution of Guinier radius with aging time indicates the good coarsening resistance of the precipitates. The evolution of integrated intensity is consistent with the classical two-step precipitation process.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 11179010 and 11075017 )the Natural Science Foundation of Beijing,China (Grant No. 1102019)the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20100003120010)
文摘According to intensity distribution of the synchrotron radiation source focused by a toroidal mirror at the Beijing synchrotron radiation biological macromolecule station, theoretical modeling of the Beijing synchrotron radiation source is developed for capillary optics. Using this theoretical modeling, the influences of the configuration curve of the polycapillary X-ray lens on transmission efficiency and working distance are analyzed. The experimental results of the transmission efficiency and working distance at the biological macromolecule station are in good agreement with the theoretical results.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.10875142,11079040,and 11075175)The 4W2 beamline of BSRF was supported by the Chinese Academy of Sciences(Grant Nos.KJCX2-SW-N20,KJCX2-SW-N03,and SYGNS04)
文摘This article summarizes the developments of experimental techniques for high pressure x-ray diffraction(XRD) in diamond anvil cells(DACs) using synchrotron radiation. Basic principles and experimental methods for various diffraction geometry are described, including powder diffraction, single crystal diffraction, radial diffraction, as well as coupling with laser heating system. Resolution in d-spacing of different diffraction modes is discussed. More recent progress, such as extended application of single crystal diffraction for measurements of multigrain and electron density distribution, timeresolved diffraction with dynamic DAC and development of modulated heating techniques are briefly introduced. The current status of the high pressure beamline at BSRF(Beijing Synchrotron Radiation Facility) and some results are also presented.
基金the grants from National Natural Science Foundation of China (No.81373175)CAMS Innovation Fund for Medical Sciences (No.2016-I2M-1003).
文摘Background: Nickel-induced allergic contact dermatitis (Ni-ACD) is a global health problem. More detailed knowledge on the skin uptake of haptens is required. This study aimed to investigate the penetration process and distribution of nickel in skin tissues with late phase and early phase of Ni-ACD to understand the mechanisms of metal allergy. Methods: Forty Hartley guinea pigs were divided into four groups according to the NiSO4 sensitizing concentration and the NiSO4 challenged concentration: the 5% NiSO4-group, 5% to 10%(sensitization-challenge;late phase group);10% NiSO4-group, 10% to 10%(sensitization-challenge;early-phase group);and the positive and negative controls. Pathological biopsies were performed on each group. The depth profile of nickel element concentration in the skin of guinea pigs was detected by synchrotron radiation micro X-ray fluorescence spectroscopy (SR-μ-XRF) and micro X-ray absorption near-edge spectroscopy (μ-XANES). Results: In each section, the nickel element concentration in both the 5% NiSO4-group and 10% NiSO4-group was significantly higher than that in the negative control group. In the upper 300-μm section of skin for the early phase group, the nickel element concentration was significantly higher than that in the lower section of skin. In deeper sections (>200 μm) of skin, the concentration of nickel in the early phase group was approximately equal to that in the late phase group. The curve of the late phase group was flat, which means that the nickel element concentration was distributed uniformly by SR-μ-XRF. According to the XANES data for the 10% NiSO4 metal salt solution, structural changes occurred in the skin model sample, indicating that nickel was not present in the Ni^2+ aqueous ionic state but in the nickel-binding protein. Conclusions: This study showed that the distribution of the nickel element concentration in ACD skin tissue was different between the early phase and late phase groups. The nickel element was not present in the Ni^2+ aqueous ionic state but bound with certain proteins to form a complex in the stratum corneum in ACD model tissue.