This study presents a new method for characterizing the thermal lattice deformation of a monochromator with high precision under service conditions and first reports the operando measurements of nanoscale thermal latt...This study presents a new method for characterizing the thermal lattice deformation of a monochromator with high precision under service conditions and first reports the operando measurements of nanoscale thermal lattice deformation on a double-crystal monochromator at different incident powers.The nanoscale thermal lattice deformation of the monochromator first crystal was obtained by analyzing the intensity of the distorted DuMond diagrams.DuMond diagrams of the 333 diffraction index,sensitive to lattice deformation,were obtained directly using a 2D detector and an analyzer crystal orthogonal to the monochromator.With increasing incident power and power density,the maximum height of the lattice deformation increased from 3.2 to 18.5 nm,and the deformation coefficient of the maximum height increased from 1.1 to 3.2 nm/W.The maximum relative standard deviation was 4.2%,and the maximum standard deviation was 0.1 nm.Based on the measured thermal deformations,the flux saturation phenomenon and critical point for the linear operation of the monochromator were predicted with increasing incident power.This study provides a simple solution to the problem of the lower precision of synchrotron radiation monochromator characterizations compared to simulations.展开更多
BL10U2 is an undulator-based macromolecular crystallography(MX)beamline located at the 3.5-GeV Shanghai Synchrotron Radiation Facility.BL10U2 is specifically designed for conducting routine and biosafety level-2(BSL-2...BL10U2 is an undulator-based macromolecular crystallography(MX)beamline located at the 3.5-GeV Shanghai Synchrotron Radiation Facility.BL10U2 is specifically designed for conducting routine and biosafety level-2(BSL-2)MX experiments utilizing high-flux tunable X-rays with energies from 7 to 18 keV,providing a beam spot size of 20μm(horizontal)×10μm(vertical)at the sample point.Certification by the Shanghai Pudong Municipal Health Commission confirmed the capability to perform BSL-2 MX experiments.The beamline is currently equipped with an Eiger X 16 M detector and two newly developed in-house high-precision diffractometers that can be switched to perform conventional or in situ crystal diffraction experiments.An automatic sample changer developed in-house allows fast sample exchange in less than 30 s,supporting high-throughput MX experimentation and rapid crystal screening.Data collection from both the diffractometer and detector was controlled by an in-house developed data collection software(Finback)with a user-friendly interface for convenient operation.This study presents a comprehensive overview of the facilities,experimental methods,and performance characteristics of the BL10U2 beamline.展开更多
Macromolecular crystallography beamline BL17U1 at the Shanghai Synchrotron Radiation Facility has been relocated,upgraded,and given a new ID(BL02U1).It now delivers X-rays in the energy range of 6–16 keV,with a focus...Macromolecular crystallography beamline BL17U1 at the Shanghai Synchrotron Radiation Facility has been relocated,upgraded,and given a new ID(BL02U1).It now delivers X-rays in the energy range of 6–16 keV,with a focused beam of 11.6μm×4.8μm and photon flux greater than 1012 phs/s.The high credibility and stability of the beam and good timing synchronization of the equipment significantly improve the experimental efficiency.Since June 2021,when it officially opened to users,over 4200 h of beamtime have been provided to over 200 research groups to collect data at the beamline.Its good performance and stable operation have led to the resolution of several structures based on data collected at the beamline.展开更多
The relative intensities of L-subshell x-ray fluorescence(XRF)for elements with atomic numbers 62≤Z≤83 were measured at two excitation energies,18 keV and 23 keV,using a synchrotron radiation source at a beamline of...The relative intensities of L-subshell x-ray fluorescence(XRF)for elements with atomic numbers 62≤Z≤83 were measured at two excitation energies,18 keV and 23 keV,using a synchrotron radiation source at a beamline of the Synchrotron Light Center for Experimental Science and Applications in the Middle East(SESAME),Jordan.The experimentally measured results of the relative intensities were compared with the calculated results using the subshell fluorescence yield and the Coster-Kronig transition probabilities recommended by Campbell and the values based on the Dirac-Hartree-Slater model by Puri.The experimental and theoretical results are in agreement.In this work,L XRF relative intensities for the elements Sm,Gd,Tb,Er,Ta,W,Re,Hg,Pb and Bi at energies of 18 keV and 23 keV were measured.展开更多
The protein complex crystallographic beamline BL19U1 at the Shanghai Synchrotron Radiation Facility is one of the five beamlines dedicated to protein sciences operated by National Facility for Protein Science(Shanghai...The protein complex crystallographic beamline BL19U1 at the Shanghai Synchrotron Radiation Facility is one of the five beamlines dedicated to protein sciences operated by National Facility for Protein Science(Shanghai,China).The beamline,which features a small-gap invacuum undulator,has been officially open to users since March 2015.This beamline delivers X-ray in the energy range 7–15 keV.With its high flux,low divergence beam and a large active area detector,BL19U1 is designed for proteins with large molecular weight and large crystallographic unit cell dimensions.Good performance and stable operation of the beamline have allowed the number of Protein Data Bank(PDB)depositions and the number of articles published based on data collected at this beamline to increase steadily.To date,over 300 research groups have collected data at the beamline.More than 600 PDB entries have been deposited at the PDB(www.pdb.org).More than 300 papers have been published that include data collected at the beamline,including 21 research articles published in the top-level journals Cell,Nature,and Science.展开更多
From a safety point of view, it is important to study the damages and reliability of molten salt reactor structural alloy materials, which are subjected to extreme environments due to neutron irradiation, molten salt ...From a safety point of view, it is important to study the damages and reliability of molten salt reactor structural alloy materials, which are subjected to extreme environments due to neutron irradiation, molten salt corrosion, fission product attacks, thermal stress, and even combinations of these. In the past few years, synchrotron radiation-based materials characterization techniques have proven to be effective in revealing the microstructural evolution and failure mechanisms of the alloys under surrogating operation conditions. Here, we review the recent progress in the investigations of molten salt corrosion,tellurium(Te) corrosion, and alloy design. The valence states and distribution of chromium(Cr) atoms, and the diffusion and local atomic structure of Te atoms near the surface of corroded alloys have been investigated using synchrotron radiation techniques, which considerably deepen the understandings on the molten salt and Te corrosion behaviors. Furthermore, the structure and size distribution of the second phases in the alloys have been obtained, which are helpful for the future development of new alloy materials.展开更多
We report the design of a wide-range energy material beamline(E-line) with multiple experimental techniques at the Shanghai Synchrotron Radiation Facility.The undulators consisted of an elliptically polarizing undulat...We report the design of a wide-range energy material beamline(E-line) with multiple experimental techniques at the Shanghai Synchrotron Radiation Facility.The undulators consisted of an elliptically polarizing undulator and in-vacuum undulator that generate the soft and hard X-rays, respectively. The beamline covered a wide energy range from 130 to 18 ke V with both a high photon flux([ 10^(12) phs/s with exit silt 30 lm in soft X-ray and [ 5 9 10^(12) phs/s in hard X-ray within 0.1%BW bandwidth) and promising resolving power(maximum E/DE [ 15,000 in soft X-ray with exit silt 30 lm and [6000 in hard X-ray). Moreover, the beam spots from the soft and hard X-rays were focused to the same sample position with a high overlap ratio, so that the surfaces, interfaces, and bulk properties were characterized in situ by changing the probing depth.展开更多
The electronic and defect energy level structure of polyerystalline Sr2MgSi2OT:Eu^2+,R^3+ persistent luminescence materials were studied with thermoluminescence and different synchrotron radiation spectroscopies (...The electronic and defect energy level structure of polyerystalline Sr2MgSi2OT:Eu^2+,R^3+ persistent luminescence materials were studied with thermoluminescence and different synchrotron radiation spectroscopies (UV-VUV emission and excitation, X-ray absorption near-edge spectroscopy (XANES) and extended X-ray absorption f'me structure (EXAFS)). Special attention was paid on the effect of the R3+ co-dopants on the persistent luminescence properties of the materials. Theoretical calculations using the density functional theory (DFT) were carried out simultaneously with the experimental work. The experimental band gap energy (Eg) value of ca. 7.1 eV agreed very well with the DFT value of 6.7 eV. The variation of the Eg value was attempted to relate with the trap structure as well as with the different properties of the R3+ co-dopants. The trap level energy distribution depended strongly on the R3+ co-dopant except for the shallowest trap energy above the room temperature remaining practically the same, however. The different processes in the mechanism of persistent luminescence from Sr2MgSi2OT:Eu^2+,R^3+ were assembled and their contributions discussed.展开更多
Beam lifetime is dominated by Touschek scattering at the Shanghai Synchrotron Radiation Facility(SSRF).Touschek loss rate is affected by probability for scattering beyond the RF acceptance and the volume charge densit...Beam lifetime is dominated by Touschek scattering at the Shanghai Synchrotron Radiation Facility(SSRF).Touschek loss rate is affected by probability for scattering beyond the RF acceptance and the volume charge density of the bench.In the phaseⅡupgrade of the SSRF,a third harmonic superconducting cavity will be used to enhance the Touschek lifetime by lengthening the bunches.The Touschek lifetime improvement factor is affected by the voltage of a harmonic cavity.To stabilize the cavity voltage,a tuning control system was designed to control it.The design of the tuning control system was based on the SSRF third-generation low-level RF control system.Some hardware and specialized algorithms were redesigned to fit the harmonic cavity control.The design of the tuning control system is complete,and the control system has been tested.The test result shows that the fluctuation of amplitude is<±0.34%within 1.5 h,which satisfies the stability requirement.展开更多
The aging behavior of Al-Cu-Mg-Ag alloys with high Cu/Mg was studied by transmission electron microscopy (TEM) and small-angle X-ray scattering (SAXS) using synchrotron radiation. TEM study reveals that the major stre...The aging behavior of Al-Cu-Mg-Ag alloys with high Cu/Mg was studied by transmission electron microscopy (TEM) and small-angle X-ray scattering (SAXS) using synchrotron radiation. TEM study reveals that the major strengthening phases of the alloy after aging at 160?C for 10 h are Ω and less θ′. SAXS study shows that the scattering patterns are composed of several concentric circles at the beginning of aging process, which is replaced by the butterfly-wings scattering patterns with the increase of aging time. The butterfly-wings scattering patterns are composed of several branches. The angles between the branches are roughly equal to that between the habit planes of precipitates. The evolution of Guinier radius with aging time indicates the good coarsening resistance of the precipitates. The evolution of integrated intensity is consistent with the classical two-step precipitation process.展开更多
In the light of Synchrotron Radiation X-ray Tomographic Microscopy (SRXTM), the internal structure of Markuelia hunanensis is revealed. In one example, vitrification and peeling show the annuli hidden under the chor...In the light of Synchrotron Radiation X-ray Tomographic Microscopy (SRXTM), the internal structure of Markuelia hunanensis is revealed. In one example, vitrification and peeling show the annuli hidden under the chorion. Sectioning and 3-D reconstruction display an intact digestive tract from the inverted introvert to the terminal anus. The inverted introvert forms a rugby cavum. The following digestive tract is rope-like coiling, parallel to the body axis, about 650 μm in length, and uniform in diameter (-80 μm). An exquisitely preserved pipe-like structure is hidden in the middle of the rope-like structure, diameter 20--40 lam, with a length of -120 μm. We interpret this pipe-like structure as the possible epidermis of the gut and its surroundings as the possible residue of musculature, similar to that in Priapulans. The two symmetrical rod-shape structures connecting the body wall and digestive tract are interpreted as the possible retractor muscles. After comparing the well preserved Left-form and Right-form Body of Markuelia, we suggest that they may represent a dimorphism. Counted directly, one sample of Markuelia hunanensis possesses 62 annulations and the other 68.展开更多
According to intensity distribution of the synchrotron radiation source focused by a toroidal mirror at the Beijing synchrotron radiation biological macromolecule station, theoretical modeling of the Beijing synchrotr...According to intensity distribution of the synchrotron radiation source focused by a toroidal mirror at the Beijing synchrotron radiation biological macromolecule station, theoretical modeling of the Beijing synchrotron radiation source is developed for capillary optics. Using this theoretical modeling, the influences of the configuration curve of the polycapillary X-ray lens on transmission efficiency and working distance are analyzed. The experimental results of the transmission efficiency and working distance at the biological macromolecule station are in good agreement with the theoretical results.展开更多
This study investigated the formulation mechanism of microspheres via internal surfactant distribution. Eudragit L100 based microspheres loaded with bovine serum albumin were prepared by solid in oil in oil emulsion s...This study investigated the formulation mechanism of microspheres via internal surfactant distribution. Eudragit L100 based microspheres loaded with bovine serum albumin were prepared by solid in oil in oil emulsion solvent evaporation method using acetone and liquid paraffin system containing sucrose stearate as a surfactant. The fabricated microspheres were evaluated for encapsulation efficiency, particle size, production yield, and in vitro release characteristics. The internal structures of microspheres were characterized using synchrotron radiation X-ray microcomputed tomography(SR-μCT). The enhanced contrast made the sucrose stearate distinguished from Eudragit to have its three dimensional(3D) distribution. Results indicated that the content and concentration determined the state of sucrose stearate and had significant influences on the release kinetics of protein. The dispersity of sucrose stearate was the primary factor that controlled the structure of the microspheres and further affected the encapsulation efficiency, effective drug loading, as well as in vitro release behavior. In conclusion, the 3D internal distribution of surfactant in microspheres and its effects on protein release behaviors have been revealed for the first time. The highly resolved 3D architecture provides new evidence for the deep understanding of the microsphere formation mechanism.展开更多
The compressive deformation behavior of the extruded WZ42(Mg98.5Y1Zn0.5 in at.%)magnesium alloy containing a low amount of long-period stacking ordered(LPSO)phase was studied by in-situ synchrotron radiation diffracti...The compressive deformation behavior of the extruded WZ42(Mg98.5Y1Zn0.5 in at.%)magnesium alloy containing a low amount of long-period stacking ordered(LPSO)phase was studied by in-situ synchrotron radiation diffraction technique.Tests were conducted at temperatures between room temperature and 350℃.Detailed microstructure investigation was provided by scanning electron microscopy,particularly the backscattered electron imaging and electron backscatter diffraction technique.The results show that twinning lost its dominance and kinking of the LPSO phase became more pronounced with increasing deformation temperature.No cracks of the LPSO phase and no debonding r at the interface between the LPSO phase and the Mg matrix were observed at temperatures above 200℃.At 350℃,the LPSO phase lost its strengthening effect and the deformation of the alloy was mainly realized by the dynamic recrystallization of the Mg matrix.展开更多
Ischemic stroke is one of the leading causes of death worldwide,and effective treatment strategies in the chronic phase of this disease remain insufficient.Homeostasis of metals in the brain plays an important role in...Ischemic stroke is one of the leading causes of death worldwide,and effective treatment strategies in the chronic phase of this disease remain insufficient.Homeostasis of metals in the brain plays an important role in maintaining normal brain function.However,the dynamic spatial distributions of iron,zinc,calcium,potassium,and copper in a rat brain following ischemic stroke and the association between structural distribution and function remain to be elucidated.In this study,we used a synchrotron radiation-based micro-X-ray fluorescence technique to image element mapping changes in special rat brain regions after ischemic stroke,showing the distribution characteristics of iron,zinc,calcium,potassium,and copper.We demonstrated,for the first time,the consistent dynamic spatial distributions of metal elements at a series of time points(3 h,4.5 h,6 h,12 h,1 d,3 d,5 d,7 d,10 d,14 d,28 d)after brain ischemia,which revealed that the homeostasis of iron,zinc,calcium,potassium,and copper in the brain was disturbed with distinctive change trends,providing clear insights in understanding the underlying pathogenesis of stroke from a novel perspective,thus laying the foundation of further developing new drug targets for stroke treatment.展开更多
Two beamlines and stations for soft X-ray lithography and hard X-ray lithography at NSRL are presented. Synchrotron radiation lithography (SRL) and mask techniques are developed, and the micro-electro-mechanical syste...Two beamlines and stations for soft X-ray lithography and hard X-ray lithography at NSRL are presented. Synchrotron radiation lithography (SRL) and mask techniques are developed, and the micro-electro-mechanical systems (MEMS) techniques are also investigated at NSRL. In this paper, some results based on SRL and MEMS techniques are reported, and sub-micron and high aspect ratio microstructures are given. Some micro-devices, such as microreactors are fabricated at NSRL.展开更多
The solidification process of metals plays a critical role in their final microstructure and, correspondingly, in their performance. It is therefore important to probe the solidification behavior of metals using advan...The solidification process of metals plays a critical role in their final microstructure and, correspondingly, in their performance. It is therefore important to probe the solidification behavior of metals using advanced in situ techniques. Synchrotron radiation X-ray imaging is one of the most powerful techniques to observe the solidification process of metals directly. Here, we review the development of the solidification apparatus, including the directional solidification device, resistance furnace, multi-field coupling device, semisolid forming device, aerodynamic levitation apparatus, and laser additive manufacturing apparatus. We highlight the recent research progress on the use of synchrotron radiation X-ray imaging to reveal the solidification behavior of metals in the above circumstances. The future perspectives of synchrotron radiation X-ray imaging in metal research are discussed. Further development of this technique will contribute to improve the understanding of the solidification process of metals and other types of materials at different scales.展开更多
This article summarizes the developments of experimental techniques for high pressure x-ray diffraction(XRD) in diamond anvil cells(DACs) using synchrotron radiation. Basic principles and experimental methods for ...This article summarizes the developments of experimental techniques for high pressure x-ray diffraction(XRD) in diamond anvil cells(DACs) using synchrotron radiation. Basic principles and experimental methods for various diffraction geometry are described, including powder diffraction, single crystal diffraction, radial diffraction, as well as coupling with laser heating system. Resolution in d-spacing of different diffraction modes is discussed. More recent progress, such as extended application of single crystal diffraction for measurements of multigrain and electron density distribution, timeresolved diffraction with dynamic DAC and development of modulated heating techniques are briefly introduced. The current status of the high pressure beamline at BSRF(Beijing Synchrotron Radiation Facility) and some results are also presented.展开更多
An experimental picosecond time-resolved X-ray ferromagnetic resonance(TR-XFMR)apparatus with a time resolution of 13 ps(RMS)or 31 ps(FWHM)was constructed and demonstrated in the 07U and 08U1A soft X-ray beamlines at ...An experimental picosecond time-resolved X-ray ferromagnetic resonance(TR-XFMR)apparatus with a time resolution of 13 ps(RMS)or 31 ps(FWHM)was constructed and demonstrated in the 07U and 08U1A soft X-ray beamlines at the Shanghai Synchrotron Radiation Facility(SSRF)using pump-probe detection and X-ray magnetic circular dichroism(XMCD)spectroscopy.Element and time-resolved ferromagnetic resonance was excited by continuous microwave phase-locking of the bunch clock within the photon beam during synchrotron radiation and was characterized by detecting the magnetic circular dichroism signals of the elements of interest in the magnetic films.Using this equipment,we measured the amplitude of the element-specific moment precession during ferromagnetic resonance(FMR)at 2 GHz in a single Ni81Fe19layer.展开更多
In order to quantify coal pore structure heterogeneity and anisotropy,synchrotron radiation SAXS(Small Angle X-ray Scattering)was applied to obtain the SAXS images of two different rank coal samples.The surface fracta...In order to quantify coal pore structure heterogeneity and anisotropy,synchrotron radiation SAXS(Small Angle X-ray Scattering)was applied to obtain the SAXS images of two different rank coal samples.The surface fractal dimension(D1)and pore fractal dimension(D2)were obtained by processing the image data.The pore structure heterogeneity of two coal samples was quantified by pore fractal dimension(D2).Pore fractal dimension of Xinzhouyao coal is 2.74 and pore fractal dimension of Tangshan coal is 1.69.As a result,the pore structure heterogeneity of Xinzhouyao coal is stronger than that of Tangshan coal.3D pore structure imaging was achieved by synchrotron radiation nano-CT.The selected Region of Interest(ROI)of coal sample was divided into a certain number of subvolumes.Pore structure heterogeneity was quantified by calculating the limit of the relative standard deviation of each subvolume’s porosity.The heterogeneity value of Xinzhouyao coal pore structure is 3.21 and the heterogeneity value of Tangshan coal pore structure is 2.71.As a result,the pore structure heterogeneity of Xinzhouyao coal is also stronger than that of Tangshan coal,namely,pore structure heterogeneity from synchrotron radiation SAXS and synchrotron radiation nano-CT is consistent.Considering the corresponding relationship between the pore structure anisotropy and the permeability anisotropy,the quantification of pore structure anisotropy was realized by computing the permeability tensor of pore structure using the Lattice Boltzmann method(LBM),and the pore structure anisotropy was characterized by the eigenvalues and eigenvectors of the permeability tensor.The pore structure anisotropy obtained by the method proposed in this paper was validated by the pore structure geometrical morphology.展开更多
基金National Natural Science Foundation of China(No.12205360)Shanghai Pilot Program for Basic Research-Chinese Academy of Science,Shanghai Branch(No.JCYJ-SHFY-2021-010).
文摘This study presents a new method for characterizing the thermal lattice deformation of a monochromator with high precision under service conditions and first reports the operando measurements of nanoscale thermal lattice deformation on a double-crystal monochromator at different incident powers.The nanoscale thermal lattice deformation of the monochromator first crystal was obtained by analyzing the intensity of the distorted DuMond diagrams.DuMond diagrams of the 333 diffraction index,sensitive to lattice deformation,were obtained directly using a 2D detector and an analyzer crystal orthogonal to the monochromator.With increasing incident power and power density,the maximum height of the lattice deformation increased from 3.2 to 18.5 nm,and the deformation coefficient of the maximum height increased from 1.1 to 3.2 nm/W.The maximum relative standard deviation was 4.2%,and the maximum standard deviation was 0.1 nm.Based on the measured thermal deformations,the flux saturation phenomenon and critical point for the linear operation of the monochromator were predicted with increasing incident power.This study provides a simple solution to the problem of the lower precision of synchrotron radiation monochromator characterizations compared to simulations.
基金supported by the SSRF Phase-II projectNatural Science Foundation of Shanghai(Nos.21ZR1471800 and 23ZR1471200)National Natural Science Foundation of China(No.12005281)。
文摘BL10U2 is an undulator-based macromolecular crystallography(MX)beamline located at the 3.5-GeV Shanghai Synchrotron Radiation Facility.BL10U2 is specifically designed for conducting routine and biosafety level-2(BSL-2)MX experiments utilizing high-flux tunable X-rays with energies from 7 to 18 keV,providing a beam spot size of 20μm(horizontal)×10μm(vertical)at the sample point.Certification by the Shanghai Pudong Municipal Health Commission confirmed the capability to perform BSL-2 MX experiments.The beamline is currently equipped with an Eiger X 16 M detector and two newly developed in-house high-precision diffractometers that can be switched to perform conventional or in situ crystal diffraction experiments.An automatic sample changer developed in-house allows fast sample exchange in less than 30 s,supporting high-throughput MX experimentation and rapid crystal screening.Data collection from both the diffractometer and detector was controlled by an in-house developed data collection software(Finback)with a user-friendly interface for convenient operation.This study presents a comprehensive overview of the facilities,experimental methods,and performance characteristics of the BL10U2 beamline.
基金supported by the National Key Research and Development Program of China(No.2021YFC2301405)the National Natural Science Foundation of China(No.31971121)Shanghai Science and Technology Plan Project(No.21ZR14718)。
文摘Macromolecular crystallography beamline BL17U1 at the Shanghai Synchrotron Radiation Facility has been relocated,upgraded,and given a new ID(BL02U1).It now delivers X-rays in the energy range of 6–16 keV,with a focused beam of 11.6μm×4.8μm and photon flux greater than 1012 phs/s.The high credibility and stability of the beam and good timing synchronization of the equipment significantly improve the experimental efficiency.Since June 2021,when it officially opened to users,over 4200 h of beamtime have been provided to over 200 research groups to collect data at the beamline.Its good performance and stable operation have led to the resolution of several structures based on data collected at the beamline.
基金supported by the Jordan University of Science and Technology(Grant No.20180167)the SESAME Synchrotron Center Jordan(Grant No.20185004)。
文摘The relative intensities of L-subshell x-ray fluorescence(XRF)for elements with atomic numbers 62≤Z≤83 were measured at two excitation energies,18 keV and 23 keV,using a synchrotron radiation source at a beamline of the Synchrotron Light Center for Experimental Science and Applications in the Middle East(SESAME),Jordan.The experimentally measured results of the relative intensities were compared with the calculated results using the subshell fluorescence yield and the Coster-Kronig transition probabilities recommended by Campbell and the values based on the Dirac-Hartree-Slater model by Puri.The experimental and theoretical results are in agreement.In this work,L XRF relative intensities for the elements Sm,Gd,Tb,Er,Ta,W,Re,Hg,Pb and Bi at energies of 18 keV and 23 keV were measured.
文摘The protein complex crystallographic beamline BL19U1 at the Shanghai Synchrotron Radiation Facility is one of the five beamlines dedicated to protein sciences operated by National Facility for Protein Science(Shanghai,China).The beamline,which features a small-gap invacuum undulator,has been officially open to users since March 2015.This beamline delivers X-ray in the energy range 7–15 keV.With its high flux,low divergence beam and a large active area detector,BL19U1 is designed for proteins with large molecular weight and large crystallographic unit cell dimensions.Good performance and stable operation of the beamline have allowed the number of Protein Data Bank(PDB)depositions and the number of articles published based on data collected at this beamline to increase steadily.To date,over 300 research groups have collected data at the beamline.More than 600 PDB entries have been deposited at the PDB(www.pdb.org).More than 300 papers have been published that include data collected at the beamline,including 21 research articles published in the top-level journals Cell,Nature,and Science.
基金supported by the National key research and development program of China(Nos.2016YFB0700401 and 2016YFB0700404)Natural Science Foundation of Shanghai(Nos.19ZR1468200 and 18ZR1448000)+2 种基金National Natural Science Foundation of China(Nos.51671154,51601213 and 51671122)Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDA02004210)Youth Innovation Promotion Association,Chinese Academy of Science(No.2019264)
文摘From a safety point of view, it is important to study the damages and reliability of molten salt reactor structural alloy materials, which are subjected to extreme environments due to neutron irradiation, molten salt corrosion, fission product attacks, thermal stress, and even combinations of these. In the past few years, synchrotron radiation-based materials characterization techniques have proven to be effective in revealing the microstructural evolution and failure mechanisms of the alloys under surrogating operation conditions. Here, we review the recent progress in the investigations of molten salt corrosion,tellurium(Te) corrosion, and alloy design. The valence states and distribution of chromium(Cr) atoms, and the diffusion and local atomic structure of Te atoms near the surface of corroded alloys have been investigated using synchrotron radiation techniques, which considerably deepen the understandings on the molten salt and Te corrosion behaviors. Furthermore, the structure and size distribution of the second phases in the alloys have been obtained, which are helpful for the future development of new alloy materials.
基金supported by the National Development and Reform Commission(NDRC) of Chinathe National Natural Science Foundation of China(No.11505280)+1 种基金the Shanghai Youth Foundation(No.14YF1407500)the National Science Foundation of China(Nos.11475251,11225527)
文摘We report the design of a wide-range energy material beamline(E-line) with multiple experimental techniques at the Shanghai Synchrotron Radiation Facility.The undulators consisted of an elliptically polarizing undulator and in-vacuum undulator that generate the soft and hard X-rays, respectively. The beamline covered a wide energy range from 130 to 18 ke V with both a high photon flux([ 10^(12) phs/s with exit silt 30 lm in soft X-ray and [ 5 9 10^(12) phs/s in hard X-ray within 0.1%BW bandwidth) and promising resolving power(maximum E/DE [ 15,000 in soft X-ray with exit silt 30 lm and [6000 in hard X-ray). Moreover, the beam spots from the soft and hard X-rays were focused to the same sample position with a high overlap ratio, so that the surfaces, interfaces, and bulk properties were characterized in situ by changing the probing depth.
基金Project supported by the Turku University Foundation, Jenny and Antti Wihuri Foundation (Finland) and the Academy of Finland (117057/2006)supported by the European Community-Research Infrastructure Action under the FP6 Structuring the European Re-search Area Programme, RII3-CT-2004-506008 (IA-SFS)+1 种基金supported by the Integrated Infrastructure Initiative "Integrating Activity on Synchrotron and Free Electron Laser Science"supported by Research Mobility Agreements (112816/2006/JH and 116142/2006/JH, 123976/2007/TL) between the Academy of Finland and the Academy of Sciences of the Czech Republic
文摘The electronic and defect energy level structure of polyerystalline Sr2MgSi2OT:Eu^2+,R^3+ persistent luminescence materials were studied with thermoluminescence and different synchrotron radiation spectroscopies (UV-VUV emission and excitation, X-ray absorption near-edge spectroscopy (XANES) and extended X-ray absorption f'me structure (EXAFS)). Special attention was paid on the effect of the R3+ co-dopants on the persistent luminescence properties of the materials. Theoretical calculations using the density functional theory (DFT) were carried out simultaneously with the experimental work. The experimental band gap energy (Eg) value of ca. 7.1 eV agreed very well with the DFT value of 6.7 eV. The variation of the Eg value was attempted to relate with the trap structure as well as with the different properties of the R3+ co-dopants. The trap level energy distribution depended strongly on the R3+ co-dopant except for the shallowest trap energy above the room temperature remaining practically the same, however. The different processes in the mechanism of persistent luminescence from Sr2MgSi2OT:Eu^2+,R^3+ were assembled and their contributions discussed.
文摘Beam lifetime is dominated by Touschek scattering at the Shanghai Synchrotron Radiation Facility(SSRF).Touschek loss rate is affected by probability for scattering beyond the RF acceptance and the volume charge density of the bench.In the phaseⅡupgrade of the SSRF,a third harmonic superconducting cavity will be used to enhance the Touschek lifetime by lengthening the bunches.The Touschek lifetime improvement factor is affected by the voltage of a harmonic cavity.To stabilize the cavity voltage,a tuning control system was designed to control it.The design of the tuning control system was based on the SSRF third-generation low-level RF control system.Some hardware and specialized algorithms were redesigned to fit the harmonic cavity control.The design of the tuning control system is complete,and the control system has been tested.The test result shows that the fluctuation of amplitude is<±0.34%within 1.5 h,which satisfies the stability requirement.
基金financially supported by the National Natural Science Foundation of China(No.51004018)
文摘The aging behavior of Al-Cu-Mg-Ag alloys with high Cu/Mg was studied by transmission electron microscopy (TEM) and small-angle X-ray scattering (SAXS) using synchrotron radiation. TEM study reveals that the major strengthening phases of the alloy after aging at 160?C for 10 h are Ω and less θ′. SAXS study shows that the scattering patterns are composed of several concentric circles at the beginning of aging process, which is replaced by the butterfly-wings scattering patterns with the increase of aging time. The butterfly-wings scattering patterns are composed of several branches. The angles between the branches are roughly equal to that between the habit planes of precipitates. The evolution of Guinier radius with aging time indicates the good coarsening resistance of the precipitates. The evolution of integrated intensity is consistent with the classical two-step precipitation process.
基金supported by the National Natural Science Foundation of China(Grant Nos.41072006,40772008)the Research Fund for Doctoral Program of High Education(Grant No.20060001059)State Key Laboratory of Paleobiology,and Stratigraphy,Nanjing Institute of Geology and Palaeontology,Chinese Academy of Sciences(Grant No.103102)
文摘In the light of Synchrotron Radiation X-ray Tomographic Microscopy (SRXTM), the internal structure of Markuelia hunanensis is revealed. In one example, vitrification and peeling show the annuli hidden under the chorion. Sectioning and 3-D reconstruction display an intact digestive tract from the inverted introvert to the terminal anus. The inverted introvert forms a rugby cavum. The following digestive tract is rope-like coiling, parallel to the body axis, about 650 μm in length, and uniform in diameter (-80 μm). An exquisitely preserved pipe-like structure is hidden in the middle of the rope-like structure, diameter 20--40 lam, with a length of -120 μm. We interpret this pipe-like structure as the possible epidermis of the gut and its surroundings as the possible residue of musculature, similar to that in Priapulans. The two symmetrical rod-shape structures connecting the body wall and digestive tract are interpreted as the possible retractor muscles. After comparing the well preserved Left-form and Right-form Body of Markuelia, we suggest that they may represent a dimorphism. Counted directly, one sample of Markuelia hunanensis possesses 62 annulations and the other 68.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 11179010 and 11075017 )the Natural Science Foundation of Beijing,China (Grant No. 1102019)the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20100003120010)
文摘According to intensity distribution of the synchrotron radiation source focused by a toroidal mirror at the Beijing synchrotron radiation biological macromolecule station, theoretical modeling of the Beijing synchrotron radiation source is developed for capillary optics. Using this theoretical modeling, the influences of the configuration curve of the polycapillary X-ray lens on transmission efficiency and working distance are analyzed. The experimental results of the transmission efficiency and working distance at the biological macromolecule station are in good agreement with the theoretical results.
基金the financial support from the National Natural Science Foundation of China(No.81430087)the National Science and Technology Major Project(2013ZX09402103)
文摘This study investigated the formulation mechanism of microspheres via internal surfactant distribution. Eudragit L100 based microspheres loaded with bovine serum albumin were prepared by solid in oil in oil emulsion solvent evaporation method using acetone and liquid paraffin system containing sucrose stearate as a surfactant. The fabricated microspheres were evaluated for encapsulation efficiency, particle size, production yield, and in vitro release characteristics. The internal structures of microspheres were characterized using synchrotron radiation X-ray microcomputed tomography(SR-μCT). The enhanced contrast made the sucrose stearate distinguished from Eudragit to have its three dimensional(3D) distribution. Results indicated that the content and concentration determined the state of sucrose stearate and had significant influences on the release kinetics of protein. The dispersity of sucrose stearate was the primary factor that controlled the structure of the microspheres and further affected the encapsulation efficiency, effective drug loading, as well as in vitro release behavior. In conclusion, the 3D internal distribution of surfactant in microspheres and its effects on protein release behaviors have been revealed for the first time. The highly resolved 3D architecture provides new evidence for the deep understanding of the microsphere formation mechanism.
基金The authors acknowledge the Deutsches Elektronen-Synchrotron for the provision of facilities within the framework of the proposal I-20170459 ECThe authors are also grateful for support from the Grant Agency of the Charles University,grant number 1262217+3 种基金the grant SVV-2019-260442the Czech Science Foundation under grant 17-21855Sthe Operational Programme Research,Development and Education,The Ministry of Education,Youth and Sports(OP RDE,MEYS),grant number CZ.02.1.01/0.0/0.0/16_013/0001794GG thanks the support of the Spanish Ministry of Economy and Competitiveness,grant number MAT2016-78850-R.
文摘The compressive deformation behavior of the extruded WZ42(Mg98.5Y1Zn0.5 in at.%)magnesium alloy containing a low amount of long-period stacking ordered(LPSO)phase was studied by in-situ synchrotron radiation diffraction technique.Tests were conducted at temperatures between room temperature and 350℃.Detailed microstructure investigation was provided by scanning electron microscopy,particularly the backscattered electron imaging and electron backscatter diffraction technique.The results show that twinning lost its dominance and kinking of the LPSO phase became more pronounced with increasing deformation temperature.No cracks of the LPSO phase and no debonding r at the interface between the LPSO phase and the Mg matrix were observed at temperatures above 200℃.At 350℃,the LPSO phase lost its strengthening effect and the deformation of the alloy was mainly realized by the dynamic recrystallization of the Mg matrix.
基金This work was supported by the National Natural Science Foundation of China(No.81501025)the Natural Science Foundation of Hunan Province(Nos.2020JJ4134 and 2016JJ3174).
文摘Ischemic stroke is one of the leading causes of death worldwide,and effective treatment strategies in the chronic phase of this disease remain insufficient.Homeostasis of metals in the brain plays an important role in maintaining normal brain function.However,the dynamic spatial distributions of iron,zinc,calcium,potassium,and copper in a rat brain following ischemic stroke and the association between structural distribution and function remain to be elucidated.In this study,we used a synchrotron radiation-based micro-X-ray fluorescence technique to image element mapping changes in special rat brain regions after ischemic stroke,showing the distribution characteristics of iron,zinc,calcium,potassium,and copper.We demonstrated,for the first time,the consistent dynamic spatial distributions of metal elements at a series of time points(3 h,4.5 h,6 h,12 h,1 d,3 d,5 d,7 d,10 d,14 d,28 d)after brain ischemia,which revealed that the homeostasis of iron,zinc,calcium,potassium,and copper in the brain was disturbed with distinctive change trends,providing clear insights in understanding the underlying pathogenesis of stroke from a novel perspective,thus laying the foundation of further developing new drug targets for stroke treatment.
文摘Two beamlines and stations for soft X-ray lithography and hard X-ray lithography at NSRL are presented. Synchrotron radiation lithography (SRL) and mask techniques are developed, and the micro-electro-mechanical systems (MEMS) techniques are also investigated at NSRL. In this paper, some results based on SRL and MEMS techniques are reported, and sub-micron and high aspect ratio microstructures are given. Some micro-devices, such as microreactors are fabricated at NSRL.
基金supported by the National Natural Science Foundation of China for Excellent Young Scholars(No.51922068)the National Natural Science Foundation of China(Nos.51821001,51904186)the fund of the State Key Laboratory of Solidification Processing in NWPU,China(No.SKLSP202102)。
文摘The solidification process of metals plays a critical role in their final microstructure and, correspondingly, in their performance. It is therefore important to probe the solidification behavior of metals using advanced in situ techniques. Synchrotron radiation X-ray imaging is one of the most powerful techniques to observe the solidification process of metals directly. Here, we review the development of the solidification apparatus, including the directional solidification device, resistance furnace, multi-field coupling device, semisolid forming device, aerodynamic levitation apparatus, and laser additive manufacturing apparatus. We highlight the recent research progress on the use of synchrotron radiation X-ray imaging to reveal the solidification behavior of metals in the above circumstances. The future perspectives of synchrotron radiation X-ray imaging in metal research are discussed. Further development of this technique will contribute to improve the understanding of the solidification process of metals and other types of materials at different scales.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.10875142,11079040,and 11075175)The 4W2 beamline of BSRF was supported by the Chinese Academy of Sciences(Grant Nos.KJCX2-SW-N20,KJCX2-SW-N03,and SYGNS04)
文摘This article summarizes the developments of experimental techniques for high pressure x-ray diffraction(XRD) in diamond anvil cells(DACs) using synchrotron radiation. Basic principles and experimental methods for various diffraction geometry are described, including powder diffraction, single crystal diffraction, radial diffraction, as well as coupling with laser heating system. Resolution in d-spacing of different diffraction modes is discussed. More recent progress, such as extended application of single crystal diffraction for measurements of multigrain and electron density distribution, timeresolved diffraction with dynamic DAC and development of modulated heating techniques are briefly introduced. The current status of the high pressure beamline at BSRF(Beijing Synchrotron Radiation Facility) and some results are also presented.
基金supported by the Nation Key R&D Program of China(No.2021YFA1601003 and 2017YFA0403400)the National Natural Science Foundation of China(Nos.11875314,52032005,and11805260)+1 种基金the National Basic Research Program of the Ministry of Industry and Information Technology,China(No.2016YFB0700402)conducted on 07U and 08U1A soft X-ray beamlines at the SSRF。
文摘An experimental picosecond time-resolved X-ray ferromagnetic resonance(TR-XFMR)apparatus with a time resolution of 13 ps(RMS)or 31 ps(FWHM)was constructed and demonstrated in the 07U and 08U1A soft X-ray beamlines at the Shanghai Synchrotron Radiation Facility(SSRF)using pump-probe detection and X-ray magnetic circular dichroism(XMCD)spectroscopy.Element and time-resolved ferromagnetic resonance was excited by continuous microwave phase-locking of the bunch clock within the photon beam during synchrotron radiation and was characterized by detecting the magnetic circular dichroism signals of the elements of interest in the magnetic films.Using this equipment,we measured the amplitude of the element-specific moment precession during ferromagnetic resonance(FMR)at 2 GHz in a single Ni81Fe19layer.
基金Supported by the National Natural Science Foundation of China(51861145403,51874312)China Postdoctoral Science Foundation(2018M641526).
文摘In order to quantify coal pore structure heterogeneity and anisotropy,synchrotron radiation SAXS(Small Angle X-ray Scattering)was applied to obtain the SAXS images of two different rank coal samples.The surface fractal dimension(D1)and pore fractal dimension(D2)were obtained by processing the image data.The pore structure heterogeneity of two coal samples was quantified by pore fractal dimension(D2).Pore fractal dimension of Xinzhouyao coal is 2.74 and pore fractal dimension of Tangshan coal is 1.69.As a result,the pore structure heterogeneity of Xinzhouyao coal is stronger than that of Tangshan coal.3D pore structure imaging was achieved by synchrotron radiation nano-CT.The selected Region of Interest(ROI)of coal sample was divided into a certain number of subvolumes.Pore structure heterogeneity was quantified by calculating the limit of the relative standard deviation of each subvolume’s porosity.The heterogeneity value of Xinzhouyao coal pore structure is 3.21 and the heterogeneity value of Tangshan coal pore structure is 2.71.As a result,the pore structure heterogeneity of Xinzhouyao coal is also stronger than that of Tangshan coal,namely,pore structure heterogeneity from synchrotron radiation SAXS and synchrotron radiation nano-CT is consistent.Considering the corresponding relationship between the pore structure anisotropy and the permeability anisotropy,the quantification of pore structure anisotropy was realized by computing the permeability tensor of pore structure using the Lattice Boltzmann method(LBM),and the pore structure anisotropy was characterized by the eigenvalues and eigenvectors of the permeability tensor.The pore structure anisotropy obtained by the method proposed in this paper was validated by the pore structure geometrical morphology.