High-entropy alloys(HEAs)possess outstanding features such as corrosion resistance,irradiation resistance,and good mechan-ical properties.A few HEAs have found applications in the fields of aerospace and defense.Exten...High-entropy alloys(HEAs)possess outstanding features such as corrosion resistance,irradiation resistance,and good mechan-ical properties.A few HEAs have found applications in the fields of aerospace and defense.Extensive studies on the deformation mech-anisms of HEAs can guide microstructure control and toughness design,which is vital for understanding and studying state-of-the-art structural materials.Synchrotron X-ray and neutron diffraction are necessary techniques for materials science research,especially for in situ coupling of physical/chemical fields and for resolving macro/microcrystallographic information on materials.Recently,several re-searchers have applied synchrotron X-ray and neutron diffraction methods to study the deformation mechanisms,phase transformations,stress behaviors,and in situ processes of HEAs,such as variable-temperature,high-pressure,and hydrogenation processes.In this review,the principles and development of synchrotron X-ray and neutron diffraction are presented,and their applications in the deformation mechanisms of HEAs are discussed.The factors that influence the deformation mechanisms of HEAs are also outlined.This review fo-cuses on the microstructures and micromechanical behaviors during tension/compression or creep/fatigue deformation and the application of synchrotron X-ray and neutron diffraction methods to the characterization of dislocations,stacking faults,twins,phases,and intergrain/interphase stress changes.Perspectives on future developments of synchrotron X-ray and neutron diffraction and on research directions on the deformation mechanisms of novel metals are discussed.展开更多
Chemical fertilizers,such as potash,have a strong tendency to cake when exposed to humidity.In this work,a novel synchrotron-based X-ray tomography 3D-imaging technique was for the first time employed to investigate t...Chemical fertilizers,such as potash,have a strong tendency to cake when exposed to humidity.In this work,a novel synchrotron-based X-ray tomography 3D-imaging technique was for the first time employed to investigate the solid bridge formation from 2D and 3D perspectives.Image processing and a theoretical model were presented to demonstrate recrystallization near contact points between potash particles during a conventional drying process.The effect of initial moisture content on the water activity of surface surrounding the contact points was investigated.The results showed that by increasing the moisture content of particles(3%–5%),the dissolution of sylvite increased and the solid bridge length between potash particles was enlarged from 28μm to 44μm due to supersaturation conditions.In addition,the external porosity of potash particles at the end of drying process decreased from 25.3%to 19.5%for 3%and 5%moisture content,respectively.展开更多
This study presents a new method for characterizing the thermal lattice deformation of a monochromator with high precision under service conditions and first reports the operando measurements of nanoscale thermal latt...This study presents a new method for characterizing the thermal lattice deformation of a monochromator with high precision under service conditions and first reports the operando measurements of nanoscale thermal lattice deformation on a double-crystal monochromator at different incident powers.The nanoscale thermal lattice deformation of the monochromator first crystal was obtained by analyzing the intensity of the distorted DuMond diagrams.DuMond diagrams of the 333 diffraction index,sensitive to lattice deformation,were obtained directly using a 2D detector and an analyzer crystal orthogonal to the monochromator.With increasing incident power and power density,the maximum height of the lattice deformation increased from 3.2 to 18.5 nm,and the deformation coefficient of the maximum height increased from 1.1 to 3.2 nm/W.The maximum relative standard deviation was 4.2%,and the maximum standard deviation was 0.1 nm.Based on the measured thermal deformations,the flux saturation phenomenon and critical point for the linear operation of the monochromator were predicted with increasing incident power.This study provides a simple solution to the problem of the lower precision of synchrotron radiation monochromator characterizations compared to simulations.展开更多
The parasitic hydrogen evolution reaction(HER)in the negative half-cell of vanadium redox flow batteries(VRFBs)causes severe efficiency losses.Thus,a deeper understanding of this process and the accompanying bubble fo...The parasitic hydrogen evolution reaction(HER)in the negative half-cell of vanadium redox flow batteries(VRFBs)causes severe efficiency losses.Thus,a deeper understanding of this process and the accompanying bubble formation is crucial.This benchmarking study locally analyzes the bubble distribution in thick,porous electrodes for the first time using deep learning-based image segmentation of synchrotron X-ray micro-tomograms.Each large three-dimensional data set was processed precisely in less than one minute while minimizing human errors and pointing out areas of increased HER activity in VRFBs.The study systematically varies the electrode potential and material,concluding that more negative electrode potentials of-200 m V vs.reversible hydrogen electrode(RHE)and lower cause more substantial bubble formation,resulting in bubble fractions of around 15%–20%in carbon felt electrodes.Contrarily,the bubble fractions stay only around 2%in an electrode combining carbon felt and carbon paper.The detected areas with high HER activity,such as the border subregion with more than 30%bubble fraction in carbon felt electrodes,the cutting edges,and preferential spots in the electrode bulk,are potential-independent and suggest that larger electrodes with a higher bulk-to-border ratio might reduce HER-related performance losses.The described combination of electrochemical measurements,local X-ray microtomography,AI-based segmentation,and 3D morphometric analysis is a powerful and novel approach for local bubble analysis in three-dimensional porous electrodes,providing an essential toolkit for a broad community working on bubble-generating electrochemical systems.展开更多
Because of its excellent dose distribution,proton therapy is becoming increasingly popular in the medical application of cancer treatment.A synchrotron-based proton therapy facility was designed and constructed in Sha...Because of its excellent dose distribution,proton therapy is becoming increasingly popular in the medical application of cancer treatment.A synchrotron-based proton therapy facility was designed and constructed in Shanghai.The synchrotron,beam delivery system,and other technical systems were commissioned and reached their expected performances.After a clinical trial of 47 patients was finished,the proton therapy facility obtained a registration certificate from the National Medical Products Administration.The characteristics of the accelerator and treatment systems are described in this article.展开更多
BL10U2 is an undulator-based macromolecular crystallography(MX)beamline located at the 3.5-GeV Shanghai Synchrotron Radiation Facility.BL10U2 is specifically designed for conducting routine and biosafety level-2(BSL-2...BL10U2 is an undulator-based macromolecular crystallography(MX)beamline located at the 3.5-GeV Shanghai Synchrotron Radiation Facility.BL10U2 is specifically designed for conducting routine and biosafety level-2(BSL-2)MX experiments utilizing high-flux tunable X-rays with energies from 7 to 18 keV,providing a beam spot size of 20μm(horizontal)×10μm(vertical)at the sample point.Certification by the Shanghai Pudong Municipal Health Commission confirmed the capability to perform BSL-2 MX experiments.The beamline is currently equipped with an Eiger X 16 M detector and two newly developed in-house high-precision diffractometers that can be switched to perform conventional or in situ crystal diffraction experiments.An automatic sample changer developed in-house allows fast sample exchange in less than 30 s,supporting high-throughput MX experimentation and rapid crystal screening.Data collection from both the diffractometer and detector was controlled by an in-house developed data collection software(Finback)with a user-friendly interface for convenient operation.This study presents a comprehensive overview of the facilities,experimental methods,and performance characteristics of the BL10U2 beamline.展开更多
Macromolecular crystallography beamline BL17U1 at the Shanghai Synchrotron Radiation Facility has been relocated,upgraded,and given a new ID(BL02U1).It now delivers X-rays in the energy range of 6–16 keV,with a focus...Macromolecular crystallography beamline BL17U1 at the Shanghai Synchrotron Radiation Facility has been relocated,upgraded,and given a new ID(BL02U1).It now delivers X-rays in the energy range of 6–16 keV,with a focused beam of 11.6μm×4.8μm and photon flux greater than 1012 phs/s.The high credibility and stability of the beam and good timing synchronization of the equipment significantly improve the experimental efficiency.Since June 2021,when it officially opened to users,over 4200 h of beamtime have been provided to over 200 research groups to collect data at the beamline.Its good performance and stable operation have led to the resolution of several structures based on data collected at the beamline.展开更多
Pseudocapacitive materials that store charges via reversible surface or near-surface faradaic reactions are capable of overcoming the capacity limitations of electrical double-layer capacitors.Revealing the structure...Pseudocapacitive materials that store charges via reversible surface or near-surface faradaic reactions are capable of overcoming the capacity limitations of electrical double-layer capacitors.Revealing the structure–activity relationship between the microstructural features of pseudocapacitive materials and their electrochemical performance on the atomic scale is the key to build high-performance capacitor-type devices containing ideal pseudocapacitance effect.Currently,the high brightness(flux),and spectral and coherent nature of synchrotron X-ray analytical techniques make it a powerful tool for probing the structure–property relationship of pseudocapacitive materials.Herein,we report a comprehensive and systematic review of four typical characterization techniques(synchrotron X-ray diffraction,pair distribution function[PDF]analysis,soft X-ray absorption spectroscopy,and hard X-ray absorption spectroscopy)for the study of pseudocapacitance mechanisms.In addition,we offered significant insights for understanding and identifying pseudocapacitance mechanisms(surface redox pseudocapacitance,intercalation pseudocapacitance,and the extrinsic pseudocapacitance phenomenon in battery materials)by combining in situ hard XAS and electrochemical analyses.Finally,a perspective for further depth of understanding into the pseudocapacitance mechanism using synchrotron X-ray analytical techniques is proposed.展开更多
The load partitioning between the magnesium and titanium phases in an extruded Mg-15%Ti(vol.%) composite from room temperature up to 300 ℃ using synchrotron radiation diffraction during in-situ compression tests. Dur...The load partitioning between the magnesium and titanium phases in an extruded Mg-15%Ti(vol.%) composite from room temperature up to 300 ℃ using synchrotron radiation diffraction during in-situ compression tests. During compression, the magnesium matrix composite deforms mainly by the activation of the extension twinning system up to 200 ℃. The volume fraction of twins increases with the plastic strain but decrease with the compression temperature. Hard titanium particles bear an additional load transferred by the soft magnesium matrix from room temperature up to 300 ℃. This effect is amplified after yield stress during plastic deformation. Additionally, twins within magnesium grains behaves as an additional reinforcement at low temperature(below 200 ℃) inducing an increase in the work hardening of the composite.展开更多
The unit-cell parameters and volumes of geikielite(MgTiO_(3))and ilmenite(FeTiO_(3))were investigated at high temperatures up to 700 K and ambient pressure,using in-situ angle-dispersive synchrotron X-ray diffraction....The unit-cell parameters and volumes of geikielite(MgTiO_(3))and ilmenite(FeTiO_(3))were investigated at high temperatures up to 700 K and ambient pressure,using in-situ angle-dispersive synchrotron X-ray diffraction.No phase transition was detected over the experimental temperature range.Using(Berman in J Petrol29:445-522,1988.10.1093/petrology/29.2.445)equations to fit the temperature-volume data,the volumetric thermal expansion coefficients at ambient conditions(α_(V0))of MgTiO_(3) and FeTiO_(3) were obtained as follows:2.55(6)×10^(-5)K^(-1)and 2.82(10)×10^(-5)K^(-1),respectively.We infer that the larger effective ionic radius of Fe^(2+)(Ⅵ)(0.78 A)than that of Mg^(2+)(Ⅵ)(0.72?)renders FeTiO_(3)has a larger volumetric thermal expansivity than MgTiO_(3).Simultaneously,the refined axial thermal expansion coefficients under ambient conditions areα_(a0)=0.74(3)×10^(-5)K^(-1)andα_(c0)=1.08(5)×10^(-5)K^(-1)for the aaxis and c-axis of MgTiO_(3),respectively,andα_(a0)=0.95(5)×10^(-5)K^(-1)andα_(c0)=0.92(12)×10^(-5)K^(-1)for the aaxis and c-axis of FeTiO_(3),respectively.The axial thermal expansivity of MgTiO_(3) is anisotropic,but that of FeTiO_(3) is nearly isotropic.We infer that the main reason for the different axial thermal expansivity between MgTiO_(3) and FeTiO_(3) is that the thermal expansion mode of the Mg-O bond in MgTiO_(3) is different from that of the Fe-O bonds in FeTiO_(3).展开更多
Transition metal sulfides have been regarded as promising anode materials for sodium-ion batteries(SIB).However,they face the challenges of poor electronic conductivity and large volume change,which result in capacity...Transition metal sulfides have been regarded as promising anode materials for sodium-ion batteries(SIB).However,they face the challenges of poor electronic conductivity and large volume change,which result in capacity fade and low rate capability.In this work,a composite containing ultrasmall CoS(~7 nm)nanoparticles embedded in heteroatom(N,S,and O)-doped carbon was synthesized by an efficient one-step sulfidation process using a Co(Salen)precursor.The ultrasmall CoS nanoparticles are beneficial for mechanical stability and shortening Na-ions diffusion pathways.Furthermore,the N,S,and O-doped defect-rich carbon provides a robust and highly conductive framework enriched with active sites for sodium storage as well as mitigates volume expansion and polysulfide shuttle.As anode for SIB,CoS@HDC exhibits a high initial capacity of 906 mA h g^(-1)at 100 mA g^(-1)and a stable long-term cycling life with over 1000 cycles at 500 mA g^(-1),showing a reversible capacity of 330 mA h g^(-1).Meanwhile,the CoS@HDC anode is proven to maintain its structural integrity and compositional reversibility during cycling.Furthermore,Na-ion full batteries based on the CoS@HDC anode and Na_(3)V_(2)(PO_(4))_(3)cathode demonstrate a stable cycling behavior with a reversible specific capacity of~200 m A h g^(-1)at least for 100 cycles.Moreover,advanced synchrotron operando X-ray diffraction,ex-situ X-ray absorption spectroscopy,and comprehensive electrochemical tests reveal the structural transformation and the Co coordination chemistry evolution of the CoS@HDC during cycling,providing fundamental insights into the sodium storage mechanism.展开更多
The relative intensities of L-subshell x-ray fluorescence(XRF)for elements with atomic numbers 62≤Z≤83 were measured at two excitation energies,18 keV and 23 keV,using a synchrotron radiation source at a beamline of...The relative intensities of L-subshell x-ray fluorescence(XRF)for elements with atomic numbers 62≤Z≤83 were measured at two excitation energies,18 keV and 23 keV,using a synchrotron radiation source at a beamline of the Synchrotron Light Center for Experimental Science and Applications in the Middle East(SESAME),Jordan.The experimentally measured results of the relative intensities were compared with the calculated results using the subshell fluorescence yield and the Coster-Kronig transition probabilities recommended by Campbell and the values based on the Dirac-Hartree-Slater model by Puri.The experimental and theoretical results are in agreement.In this work,L XRF relative intensities for the elements Sm,Gd,Tb,Er,Ta,W,Re,Hg,Pb and Bi at energies of 18 keV and 23 keV were measured.展开更多
The purpose of this study was to design a rapid-cycling synchrotron, making it capable of proton beam ultrahigh dose rate irradiation, inspired by laser accelerators. The design had to be cheap and simple. We consider...The purpose of this study was to design a rapid-cycling synchrotron, making it capable of proton beam ultrahigh dose rate irradiation, inspired by laser accelerators. The design had to be cheap and simple. We consider our design from six aspects: the lattice, injection, extraction, space charge effects, eddy current effects and energy switching. Efficiency and particle quantity must be addressed when injected. The space charge effects at the injection could affect particles' number. The eddy current effects in the vacuum chambers would affect the magnetic field itself and generate heat, all of which need to be taken into account. Fast extraction can obtain 10^(10) protons/pulse, equal to instantaneous dose rate up to 10~7 Gy/s in a very short time, while changing various extraction energies rapidly and easily to various deposition depths. In the further research, we expect to combine a delivery system with this accelerator to realize the FLASH irradiation.展开更多
基金supported by the National Natural Science Foundation of China(Nos.52171098 and 51921001)the State Key Laboratory for Advanced Metals and Materials(No.2022Z-02)+1 种基金the National High-level Personnel of Special Support Program(No.ZYZZ2021001)the Fundamental Research Funds for the Central Universities(Nos.FRF-TP-20-03C2 and FRF-BD-20-02B).
文摘High-entropy alloys(HEAs)possess outstanding features such as corrosion resistance,irradiation resistance,and good mechan-ical properties.A few HEAs have found applications in the fields of aerospace and defense.Extensive studies on the deformation mech-anisms of HEAs can guide microstructure control and toughness design,which is vital for understanding and studying state-of-the-art structural materials.Synchrotron X-ray and neutron diffraction are necessary techniques for materials science research,especially for in situ coupling of physical/chemical fields and for resolving macro/microcrystallographic information on materials.Recently,several re-searchers have applied synchrotron X-ray and neutron diffraction methods to study the deformation mechanisms,phase transformations,stress behaviors,and in situ processes of HEAs,such as variable-temperature,high-pressure,and hydrogenation processes.In this review,the principles and development of synchrotron X-ray and neutron diffraction are presented,and their applications in the deformation mechanisms of HEAs are discussed.The factors that influence the deformation mechanisms of HEAs are also outlined.This review fo-cuses on the microstructures and micromechanical behaviors during tension/compression or creep/fatigue deformation and the application of synchrotron X-ray and neutron diffraction methods to the characterization of dislocations,stacking faults,twins,phases,and intergrain/interphase stress changes.Perspectives on future developments of synchrotron X-ray and neutron diffraction and on research directions on the deformation mechanisms of novel metals are discussed.
文摘Chemical fertilizers,such as potash,have a strong tendency to cake when exposed to humidity.In this work,a novel synchrotron-based X-ray tomography 3D-imaging technique was for the first time employed to investigate the solid bridge formation from 2D and 3D perspectives.Image processing and a theoretical model were presented to demonstrate recrystallization near contact points between potash particles during a conventional drying process.The effect of initial moisture content on the water activity of surface surrounding the contact points was investigated.The results showed that by increasing the moisture content of particles(3%–5%),the dissolution of sylvite increased and the solid bridge length between potash particles was enlarged from 28μm to 44μm due to supersaturation conditions.In addition,the external porosity of potash particles at the end of drying process decreased from 25.3%to 19.5%for 3%and 5%moisture content,respectively.
基金National Natural Science Foundation of China(No.12205360)Shanghai Pilot Program for Basic Research-Chinese Academy of Science,Shanghai Branch(No.JCYJ-SHFY-2021-010).
文摘This study presents a new method for characterizing the thermal lattice deformation of a monochromator with high precision under service conditions and first reports the operando measurements of nanoscale thermal lattice deformation on a double-crystal monochromator at different incident powers.The nanoscale thermal lattice deformation of the monochromator first crystal was obtained by analyzing the intensity of the distorted DuMond diagrams.DuMond diagrams of the 333 diffraction index,sensitive to lattice deformation,were obtained directly using a 2D detector and an analyzer crystal orthogonal to the monochromator.With increasing incident power and power density,the maximum height of the lattice deformation increased from 3.2 to 18.5 nm,and the deformation coefficient of the maximum height increased from 1.1 to 3.2 nm/W.The maximum relative standard deviation was 4.2%,and the maximum standard deviation was 0.1 nm.Based on the measured thermal deformations,the flux saturation phenomenon and critical point for the linear operation of the monochromator were predicted with increasing incident power.This study provides a simple solution to the problem of the lower precision of synchrotron radiation monochromator characterizations compared to simulations.
基金financial support through a KekuléPh.D.fellowship by the Fonds der Chemischen Industrie(FCI)support from the China Scholarship Council(No.202106950013)。
文摘The parasitic hydrogen evolution reaction(HER)in the negative half-cell of vanadium redox flow batteries(VRFBs)causes severe efficiency losses.Thus,a deeper understanding of this process and the accompanying bubble formation is crucial.This benchmarking study locally analyzes the bubble distribution in thick,porous electrodes for the first time using deep learning-based image segmentation of synchrotron X-ray micro-tomograms.Each large three-dimensional data set was processed precisely in less than one minute while minimizing human errors and pointing out areas of increased HER activity in VRFBs.The study systematically varies the electrode potential and material,concluding that more negative electrode potentials of-200 m V vs.reversible hydrogen electrode(RHE)and lower cause more substantial bubble formation,resulting in bubble fractions of around 15%–20%in carbon felt electrodes.Contrarily,the bubble fractions stay only around 2%in an electrode combining carbon felt and carbon paper.The detected areas with high HER activity,such as the border subregion with more than 30%bubble fraction in carbon felt electrodes,the cutting edges,and preferential spots in the electrode bulk,are potential-independent and suggest that larger electrodes with a higher bulk-to-border ratio might reduce HER-related performance losses.The described combination of electrochemical measurements,local X-ray microtomography,AI-based segmentation,and 3D morphometric analysis is a powerful and novel approach for local bubble analysis in three-dimensional porous electrodes,providing an essential toolkit for a broad community working on bubble-generating electrochemical systems.
文摘Because of its excellent dose distribution,proton therapy is becoming increasingly popular in the medical application of cancer treatment.A synchrotron-based proton therapy facility was designed and constructed in Shanghai.The synchrotron,beam delivery system,and other technical systems were commissioned and reached their expected performances.After a clinical trial of 47 patients was finished,the proton therapy facility obtained a registration certificate from the National Medical Products Administration.The characteristics of the accelerator and treatment systems are described in this article.
基金supported by the SSRF Phase-II projectNatural Science Foundation of Shanghai(Nos.21ZR1471800 and 23ZR1471200)National Natural Science Foundation of China(No.12005281)。
文摘BL10U2 is an undulator-based macromolecular crystallography(MX)beamline located at the 3.5-GeV Shanghai Synchrotron Radiation Facility.BL10U2 is specifically designed for conducting routine and biosafety level-2(BSL-2)MX experiments utilizing high-flux tunable X-rays with energies from 7 to 18 keV,providing a beam spot size of 20μm(horizontal)×10μm(vertical)at the sample point.Certification by the Shanghai Pudong Municipal Health Commission confirmed the capability to perform BSL-2 MX experiments.The beamline is currently equipped with an Eiger X 16 M detector and two newly developed in-house high-precision diffractometers that can be switched to perform conventional or in situ crystal diffraction experiments.An automatic sample changer developed in-house allows fast sample exchange in less than 30 s,supporting high-throughput MX experimentation and rapid crystal screening.Data collection from both the diffractometer and detector was controlled by an in-house developed data collection software(Finback)with a user-friendly interface for convenient operation.This study presents a comprehensive overview of the facilities,experimental methods,and performance characteristics of the BL10U2 beamline.
基金supported by the National Key Research and Development Program of China(No.2021YFC2301405)the National Natural Science Foundation of China(No.31971121)Shanghai Science and Technology Plan Project(No.21ZR14718)。
文摘Macromolecular crystallography beamline BL17U1 at the Shanghai Synchrotron Radiation Facility has been relocated,upgraded,and given a new ID(BL02U1).It now delivers X-rays in the energy range of 6–16 keV,with a focused beam of 11.6μm×4.8μm and photon flux greater than 1012 phs/s.The high credibility and stability of the beam and good timing synchronization of the equipment significantly improve the experimental efficiency.Since June 2021,when it officially opened to users,over 4200 h of beamtime have been provided to over 200 research groups to collect data at the beamline.Its good performance and stable operation have led to the resolution of several structures based on data collected at the beamline.
基金financialy supported by National Key R&D Program of China(2022YFB2402600)the National Natural Science Foundation of China(22279166)+1 种基金the Research Start-up Funds from Sun Yat-Sen University(200306)the Fundamental Research Funds for the Central Universities,Sun Yat-Sen University(22qntd0101 and 22dfx01)
文摘Pseudocapacitive materials that store charges via reversible surface or near-surface faradaic reactions are capable of overcoming the capacity limitations of electrical double-layer capacitors.Revealing the structure–activity relationship between the microstructural features of pseudocapacitive materials and their electrochemical performance on the atomic scale is the key to build high-performance capacitor-type devices containing ideal pseudocapacitance effect.Currently,the high brightness(flux),and spectral and coherent nature of synchrotron X-ray analytical techniques make it a powerful tool for probing the structure–property relationship of pseudocapacitive materials.Herein,we report a comprehensive and systematic review of four typical characterization techniques(synchrotron X-ray diffraction,pair distribution function[PDF]analysis,soft X-ray absorption spectroscopy,and hard X-ray absorption spectroscopy)for the study of pseudocapacitance mechanisms.In addition,we offered significant insights for understanding and identifying pseudocapacitance mechanisms(surface redox pseudocapacitance,intercalation pseudocapacitance,and the extrinsic pseudocapacitance phenomenon in battery materials)by combining in situ hard XAS and electrochemical analyses.Finally,a perspective for further depth of understanding into the pseudocapacitance mechanism using synchrotron X-ray analytical techniques is proposed.
基金financial support of the Spanish Ministry of Economy and Competitiveness under project number MAT2016-78850-Rprovision of beamtime at the P07 beamline of the Petra Ⅲ synchrotron facility under the project I-20170054EC。
文摘The load partitioning between the magnesium and titanium phases in an extruded Mg-15%Ti(vol.%) composite from room temperature up to 300 ℃ using synchrotron radiation diffraction during in-situ compression tests. During compression, the magnesium matrix composite deforms mainly by the activation of the extension twinning system up to 200 ℃. The volume fraction of twins increases with the plastic strain but decrease with the compression temperature. Hard titanium particles bear an additional load transferred by the soft magnesium matrix from room temperature up to 300 ℃. This effect is amplified after yield stress during plastic deformation. Additionally, twins within magnesium grains behaves as an additional reinforcement at low temperature(below 200 ℃) inducing an increase in the work hardening of the composite.
基金supported by National Natural Science Foundation of China(U2032118 and 42172048)Guizhou Provincial Science and Technology Projects(QKHPTRCYQK[2023]035 and QKHJC-ZK[2021]ZD042)+1 种基金Hundred Talents Program of the Chinese Academy of SciencesGuizhou Provincial 2020 and 2021 Science and Technology Subsidies(Nos.GZ2020SIG and GZ2021SIG)。
文摘The unit-cell parameters and volumes of geikielite(MgTiO_(3))and ilmenite(FeTiO_(3))were investigated at high temperatures up to 700 K and ambient pressure,using in-situ angle-dispersive synchrotron X-ray diffraction.No phase transition was detected over the experimental temperature range.Using(Berman in J Petrol29:445-522,1988.10.1093/petrology/29.2.445)equations to fit the temperature-volume data,the volumetric thermal expansion coefficients at ambient conditions(α_(V0))of MgTiO_(3) and FeTiO_(3) were obtained as follows:2.55(6)×10^(-5)K^(-1)and 2.82(10)×10^(-5)K^(-1),respectively.We infer that the larger effective ionic radius of Fe^(2+)(Ⅵ)(0.78 A)than that of Mg^(2+)(Ⅵ)(0.72?)renders FeTiO_(3)has a larger volumetric thermal expansivity than MgTiO_(3).Simultaneously,the refined axial thermal expansion coefficients under ambient conditions areα_(a0)=0.74(3)×10^(-5)K^(-1)andα_(c0)=1.08(5)×10^(-5)K^(-1)for the aaxis and c-axis of MgTiO_(3),respectively,andα_(a0)=0.95(5)×10^(-5)K^(-1)andα_(c0)=0.92(12)×10^(-5)K^(-1)for the aaxis and c-axis of FeTiO_(3),respectively.The axial thermal expansivity of MgTiO_(3) is anisotropic,but that of FeTiO_(3) is nearly isotropic.We infer that the main reason for the different axial thermal expansivity between MgTiO_(3) and FeTiO_(3) is that the thermal expansion mode of the Mg-O bond in MgTiO_(3) is different from that of the Fe-O bonds in FeTiO_(3).
基金the financial support from China Scholarship Council(202108080263)Financial support by the Federal Ministry of Education and Research(BMBF)under the project“He Na”(03XP0390C)+1 种基金the German Research Foundation(DFG)under the joint German-Russian DFG project“KIBSS”(448719339)are acknowledgedthe financial support from the Federal Ministry of Education and Research(BMBF)under the project“Ka Si Li”(03XP0254D)in the competence cluster“Excell Batt Mat”。
文摘Transition metal sulfides have been regarded as promising anode materials for sodium-ion batteries(SIB).However,they face the challenges of poor electronic conductivity and large volume change,which result in capacity fade and low rate capability.In this work,a composite containing ultrasmall CoS(~7 nm)nanoparticles embedded in heteroatom(N,S,and O)-doped carbon was synthesized by an efficient one-step sulfidation process using a Co(Salen)precursor.The ultrasmall CoS nanoparticles are beneficial for mechanical stability and shortening Na-ions diffusion pathways.Furthermore,the N,S,and O-doped defect-rich carbon provides a robust and highly conductive framework enriched with active sites for sodium storage as well as mitigates volume expansion and polysulfide shuttle.As anode for SIB,CoS@HDC exhibits a high initial capacity of 906 mA h g^(-1)at 100 mA g^(-1)and a stable long-term cycling life with over 1000 cycles at 500 mA g^(-1),showing a reversible capacity of 330 mA h g^(-1).Meanwhile,the CoS@HDC anode is proven to maintain its structural integrity and compositional reversibility during cycling.Furthermore,Na-ion full batteries based on the CoS@HDC anode and Na_(3)V_(2)(PO_(4))_(3)cathode demonstrate a stable cycling behavior with a reversible specific capacity of~200 m A h g^(-1)at least for 100 cycles.Moreover,advanced synchrotron operando X-ray diffraction,ex-situ X-ray absorption spectroscopy,and comprehensive electrochemical tests reveal the structural transformation and the Co coordination chemistry evolution of the CoS@HDC during cycling,providing fundamental insights into the sodium storage mechanism.
基金supported by the Jordan University of Science and Technology(Grant No.20180167)the SESAME Synchrotron Center Jordan(Grant No.20185004)。
文摘The relative intensities of L-subshell x-ray fluorescence(XRF)for elements with atomic numbers 62≤Z≤83 were measured at two excitation energies,18 keV and 23 keV,using a synchrotron radiation source at a beamline of the Synchrotron Light Center for Experimental Science and Applications in the Middle East(SESAME),Jordan.The experimentally measured results of the relative intensities were compared with the calculated results using the subshell fluorescence yield and the Coster-Kronig transition probabilities recommended by Campbell and the values based on the Dirac-Hartree-Slater model by Puri.The experimental and theoretical results are in agreement.In this work,L XRF relative intensities for the elements Sm,Gd,Tb,Er,Ta,W,Re,Hg,Pb and Bi at energies of 18 keV and 23 keV were measured.
文摘The purpose of this study was to design a rapid-cycling synchrotron, making it capable of proton beam ultrahigh dose rate irradiation, inspired by laser accelerators. The design had to be cheap and simple. We consider our design from six aspects: the lattice, injection, extraction, space charge effects, eddy current effects and energy switching. Efficiency and particle quantity must be addressed when injected. The space charge effects at the injection could affect particles' number. The eddy current effects in the vacuum chambers would affect the magnetic field itself and generate heat, all of which need to be taken into account. Fast extraction can obtain 10^(10) protons/pulse, equal to instantaneous dose rate up to 10~7 Gy/s in a very short time, while changing various extraction energies rapidly and easily to various deposition depths. In the further research, we expect to combine a delivery system with this accelerator to realize the FLASH irradiation.
基金funded by the National Natural Science Foundation of China (Nos. 52004086, 52274288, 51934009)National Key Research and Development Plan of China (No. 2022YFC2105300)+4 种基金China Postdoctoral Science Foundation (No. 2021M703620)the Key Project of Science and Technology of Henan Province, China (No. 202102310543)the Key Research Project of Colleges and Universities in Henan Province, China (No. 21A440007)the Open Foundation of State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, China (No. CNMRCUKF2009)the Natural Science Foundation of Henan Polytechnic University, China (No. B2020-27)。