A partition solution implemented by a cold air curtain for two asymmetric discrete heat sources in a twodimensional rectangular enclosure was numerically studied. Main attentions were focused on the effects of Reynold...A partition solution implemented by a cold air curtain for two asymmetric discrete heat sources in a twodimensional rectangular enclosure was numerically studied. Main attentions were focused on the effects of Reynolds number, Grashof number, separation distance between heat sources, and buoyancy ratio. It is found that the airflow and heat transfer are not only determined by governing parameters, but also affected by boundary conditions. It is also found that nearly symmetry of flow structure corresponds to nearly thermal partition, and the symmetry can be enhanced when Reynolds number, separation distance and buoyancy ratio increase. In addition, it is observed that there is a minimum Reynolds number for obtaining nearly thermal partition, which increases when Grashof number increases.展开更多
In spring preceding the record minimum summer ice cover detailed microstructure measurements were made from drifting pack ice in the Arctic Ocean, 110 km from the North Pole. Profiles of hydrography, shear, and temper...In spring preceding the record minimum summer ice cover detailed microstructure measurements were made from drifting pack ice in the Arctic Ocean, 110 km from the North Pole. Profiles of hydrography, shear, and temperature microstructure collected in the upper water column covering the core of the Atlantic Water are analyzed to determine the diapycnal eddy diffusivity, the eddy diffusivity for heat, and the turbulent flux of heat. Turbulence in the bulk of the cold halocline layer was not strong enough to generate significant buoyancy flux and mixing. Resulting turbulent heat flux across the upper cold halocline was not significantly different than zero. The results show that the low levels of eddy diffusivity in the upper cold halocline lead to small vertical turbulent transport of heat, thereby allowing the maintenance of the cold halocline in the central Arctic.展开更多
基金Project (50408019) supported by the National Natural Science Foundation of China
文摘A partition solution implemented by a cold air curtain for two asymmetric discrete heat sources in a twodimensional rectangular enclosure was numerically studied. Main attentions were focused on the effects of Reynolds number, Grashof number, separation distance between heat sources, and buoyancy ratio. It is found that the airflow and heat transfer are not only determined by governing parameters, but also affected by boundary conditions. It is also found that nearly symmetry of flow structure corresponds to nearly thermal partition, and the symmetry can be enhanced when Reynolds number, separation distance and buoyancy ratio increase. In addition, it is observed that there is a minimum Reynolds number for obtaining nearly thermal partition, which increases when Grashof number increases.
基金funded by the Research Council of Norway, through NORKLIMA Young Investigator grant
文摘In spring preceding the record minimum summer ice cover detailed microstructure measurements were made from drifting pack ice in the Arctic Ocean, 110 km from the North Pole. Profiles of hydrography, shear, and temperature microstructure collected in the upper water column covering the core of the Atlantic Water are analyzed to determine the diapycnal eddy diffusivity, the eddy diffusivity for heat, and the turbulent flux of heat. Turbulence in the bulk of the cold halocline layer was not strong enough to generate significant buoyancy flux and mixing. Resulting turbulent heat flux across the upper cold halocline was not significantly different than zero. The results show that the low levels of eddy diffusivity in the upper cold halocline lead to small vertical turbulent transport of heat, thereby allowing the maintenance of the cold halocline in the central Arctic.