The three dimensional variable cross-section roll forming is a kind of new metal forming technol- ogy which combines large forming force, multi-axis linkage movement and space synergic movement, and the sequential syn...The three dimensional variable cross-section roll forming is a kind of new metal forming technol- ogy which combines large forming force, multi-axis linkage movement and space synergic movement, and the sequential synergic movement of the ganged roller group is used to complete the metal sheet forming according to the shape of the complicated and variable forming part data. The control system should meet the demands of quick response to the test requirements of the product part. A new kind of real time data driving multi-axis linkage and synergic movement control strategy of 3D roll forming is put forward in the paper. In the new control strategy, the forming data are automatically generated according to the shape of the parts, and the multi-axis linkage movement together with cooperative motion among the six stands of the 3D roll forming machine is driven by the real-time information, and the control nodes are also driven by the forming data. The new control strategy is applied to a 48 axis 3D roll forming machine developed by our research center, and the control servo period is less than 10ms. A forming experiment of variable cross section part is carried out, and the forming preci- sion is better than + 0.5mm by the control strategy. The result of the experiment proves that the control strategy has significant potentiality for the development of 3D roll forming production line with large scale, multi-axis ganged and svner^ic movement展开更多
Dynamic Programming (DP) algorithm is used to find the optimal trajectories under Beijing cycle for the power management of synergic electric system (SES) which is composed of battery and super capacitor. Feasible rul...Dynamic Programming (DP) algorithm is used to find the optimal trajectories under Beijing cycle for the power management of synergic electric system (SES) which is composed of battery and super capacitor. Feasible rules are derived from analyzing the optimal trajectories, and it has the highest contribution to Hybrid Electric Vehicle (HEV). The methods of how to get the best performance is also educed. Using the new Rule-based power management strat-egy adopted from the optimal results, it is easy to demonstrate the effectiveness of the new strategy in further improvement of the fuel economy by the synergic hybrid system.展开更多
This paper delves into the topic of synergic office system with utilizing J2EE exploring mode and technology about Struts-Spring-Hibernate frame,and illustrates the whole process of synergic office system exploration.
A chest radiology scan can significantly aid the early diagnosis and management of COVID-19 since the virus attacks the lungs.Chest X-ray(CXR)gained much interest after the COVID-19 outbreak thanks to its rapid imagin...A chest radiology scan can significantly aid the early diagnosis and management of COVID-19 since the virus attacks the lungs.Chest X-ray(CXR)gained much interest after the COVID-19 outbreak thanks to its rapid imaging time,widespread availability,low cost,and portability.In radiological investigations,computer-aided diagnostic tools are implemented to reduce intra-and inter-observer variability.Using lately industrialized Artificial Intelligence(AI)algorithms and radiological techniques to diagnose and classify disease is advantageous.The current study develops an automatic identification and classification model for CXR pictures using Gaussian Fil-tering based Optimized Synergic Deep Learning using Remora Optimization Algorithm(GF-OSDL-ROA).This method is inclusive of preprocessing and classification based on optimization.The data is preprocessed using Gaussian filtering(GF)to remove any extraneous noise from the image’s edges.Then,the OSDL model is applied to classify the CXRs under different severity levels based on CXR data.The learning rate of OSDL is optimized with the help of ROA for COVID-19 diagnosis showing the novelty of the work.OSDL model,applied in this study,was validated using the COVID-19 dataset.The experiments were conducted upon the proposed OSDL model,which achieved a classification accuracy of 99.83%,while the current Convolutional Neural Network achieved less classification accuracy,i.e.,98.14%.展开更多
Background:Despite the availability of chemotherapy drugs such as 5-fluorouracil(5-FU),the treatment of some cancers such as gastric cancer remains challenging due to drug resistance and side effects.This study aimed t...Background:Despite the availability of chemotherapy drugs such as 5-fluorouracil(5-FU),the treatment of some cancers such as gastric cancer remains challenging due to drug resistance and side effects.This study aimed to investigate the effect of celastrol in combination with the chemotherapy drug 5-FU on proliferation and induction of apoptosis in human gastric cancer cell lines(AGS and EPG85-257).Materials and Methods:In this in vitro study,AGS and EPG85-257 cells were treated with different concentrations of celastrol,5-FU,and their combination.Cell proliferation was assessed using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide(MTT)assay.The synergistic effect of 5-FU and celastrol was studied using Compusyn software.The DNA content at different phases of the cell cycle and apoptosis rate was measured usingflow cytometry.Results:Co-treatment with low concentrations(10%inhibitory concentration(IC10))of celastrol and 5-FU significantly reduced IC50(p<0.05)so that 48 h after treatment,IC50 was calculated at 3.77 and 6.9μM for celastrol,20.7 and 11.6μM for 5-FU,and 5.03 and 4.57μM for their combination for AGS and EPG85-257 cells,respectively.The mean percentage of apoptosis for AGS cells treated with celastrol,5-FU,and their combination was obtained 23.9,41.2,and 61.9,and for EPG85-257 cells 5.65,46.9,and 55.7,respectively.In addition,the 5-FU and celastrol-5-FU combination induced cell cycle arrest in the synthesis phase.Conclusions:Although celastrol could decrease the concentration of 5-fluorouracil that sufficed to suppress gastric cancer cells,additional studies are required to arrive at conclusive evidence on the anticancer effects of celastrol.展开更多
This study was conducted to evaluate the effectiveness of enzymes in purifying and reducing the degree of polymerization of cellulose for the production of dissolving pulp.Our goal was to determine the contributions o...This study was conducted to evaluate the effectiveness of enzymes in purifying and reducing the degree of polymerization of cellulose for the production of dissolving pulp.Our goal was to determine the contributions of xylanase(X)and endoglucanase(EG)in the treatment of pulp,specifically by quantifying the formation of soluble and insoluble reducing sugars using the dinitrosalycilic acid(DNS)test.Predominantly,the release of soluble reducing sugars(RSSol)was enhanced after xylanase treatment,while endoglucanase(EG)treatment led to changes in insoluble reducing sugars(RSIns).The maximum synergism was observed for RSIns when a high ratio of endoglucanase to xylanase(320EG:5X/g pulp)was used.The relative contribution of endoglucanase to RSins was determined to be 15.6%of the total reducing sugar.The viscosity of pulps treated with xylanase decreased only by 7%,whereas endoglucanase treatment significantly reduced viscosity by 45%.Modifications in the particle size were observed after pulp treatment with the combination of endoglucanase and xylanase.In summary,the DNS test is a rapid and effective method for evaluating the efficiency of enzyme treatments on pulps.The measurement of RSIns correlates with changes in pulp viscosity to different extents,providing valuable insights into the effectiveness of enzyme treatments.展开更多
The procedure of supply chain development is the process of continuously congregating knowledge and transforming knowledge.First,the precondition of synergic knowledge innovation in the supply chain is narrated.Then t...The procedure of supply chain development is the process of continuously congregating knowledge and transforming knowledge.First,the precondition of synergic knowledge innovation in the supply chain is narrated.Then the characteristics of synergic knowledge innovation in the supply chain are analyzed,including complexity,accumulating and evolving process,and the cooperation of members and network integration.Due to the characteristics of multi-factors and uncertainties of the supply chain system,the fuzzy multi-attribution group decision-making model is introduced to solve the involved problem of synergic knowledge innovation in the supply chain.After elaborating on steps of using the fuzzy multiple attribute decision-making(MADM)model,the procedure of decision making for synergic knowledge innovation in the supply chain is explained from an example in the application of a fuzzy MADM model.The fuzzy MADM model,which amalgamates intuition and resolution decision-making can effectively improve the rationality of decision-making for synergic knowledge innovation in the supply chain.展开更多
Background:More and more consumers are paying attention to skin rejuvenation.However,there is a lack of a non-invasive and efficient solution.Objective:To evaluate the efficacy of a trinity permeation synergism(TPS),w...Background:More and more consumers are paying attention to skin rejuvenation.However,there is a lack of a non-invasive and efficient solution.Objective:To evaluate the efficacy of a trinity permeation synergism(TPS),which consists of a firming essence,an atomizer and a photoelectric penetrator,for facial anti-aging efficacy.Material and methods:In this work,in vitro cell experiments and human efficacy study were used to evaluate the firming and anti-wrinkle effects.Cell experiments were used to verify the effect of the firming essence on the cell proliferation,migration,and anti-inflammation in keratinocytes(HaCaT),and on the gene expression levels of type I and type III collagen(Col-1 and Col-3)and type I matrix metalloproteinase(MMP-1)in human skin fibroblasts(HSF).After in vitro test,60 women aged 35–60 years were enrolled in the randomized test,of which 30 subjects were randomly selected to be the experimental group and treated with the TPS system,while the left 30 subjects were treated with the firming essence only considered as control.After 28 days,skin elasticity,skin redness value,and skin wrinkles were measured to evaluate the efficacy of the TPS system.Results:Cell experiments showed that the firming essence can significantly improve the proliferation and the migration of HaCaT cells.It also promoted the expression level of Col-1 and Col-3 gene,and inhibited the expression level of MMP-1 gene in HSF cells.After confirming the efficacy of firming essence,the efficacy benefit of the TPS was further studied.The 28-day tests show that combined use firming essence with atomizer and penetrator can significantly increase skin elasticity,reduce skin hemoglobin value and skin wrinkles on Day 28.Moreover,all the mentioned improvements are significantly better than that in the control group.Conclusion:Through efficient delivery in the whole process,TPS boosts the efficacy of active components in the firming essence.TPS offers an efficient,non-invasive,and convenient way for enhanced facial rejuvenation efficacy.展开更多
The synergistic interaction between the cationic guar gum (the ammonium hydroxy-propyl-trimethyl chloride of guar gum) and sodium alginate has been studied. The effects of the mass ratio of them, mixed temperature, ba...The synergistic interaction between the cationic guar gum (the ammonium hydroxy-propyl-trimethyl chloride of guar gum) and sodium alginate has been studied. The effects of the mass ratio of them, mixed temperature, balk salt ion concentration, incubation time and pH value on gelation were investigated. It has been observed that there was a gel strength maximum when the mass ratio was 0.6, the mixed temperature was 70°C, the balk salt ion concentration was 1.0 mol·L?1, the incubation time was 30 min and the pH value was 8. Interaction between molecules of these two polysaccharides was investigated by FT-IR spectrometry. Key words cationic guar gum - sodium alginate - gelation - synergism CLC number O 629.12 Foundation item: Supported by the National Natural Science Foundation of China(29574173)Biography: He Dong-bao (1945-), male, Associate professor, research direction: modifying and gelating of natural polysaccharides.展开更多
To study the cooperative development mechanism of ocean meteorological modernization of Huang-Bohai,we analyze the situation of ocean meteorological modernization in Huang-Bohai with the method of an new five-force mo...To study the cooperative development mechanism of ocean meteorological modernization of Huang-Bohai,we analyze the situation of ocean meteorological modernization in Huang-Bohai with the method of an new five-force model and the analyses of strengths,weaknesses,opportunities and threats (SWOT analysis).As the research results shown,the advantages of ocean meteorological modernization of Huang-Bohai mainly include three aspects which are ocean meteorological observation system,ocean meteorological warning information release and the construction of ocean meteorological center;the disadvantages contain that stereo-observation ability of the ocean meteorology is insufficiency,and the precision forecast technology and the cooperative development are deficiency in ocean meteorology;opportunities also include three aspects which are "The Belt and Road",and development of new technology and new warning system on meteorology disasters;threats mainly contain the main influencing weather system,the potential social competition and hazard factors.The use of different functions and combination innovation of five forces,i.e.,attractiveness,cohesiveness,radiating power,repulsiveness and affinity,could promote the cooperative development of ocean meteorological modernization in the Huang-Bohai.展开更多
A type of novel inverter power supply system for high-power twin-wire pulsed gas metal arc welding (GMAW) is presented mainly for dealing with the disadvantages of the conventional power supply for twin-wire pulsed ...A type of novel inverter power supply system for high-power twin-wire pulsed gas metal arc welding (GMAW) is presented mainly for dealing with the disadvantages of the conventional power supply for twin-wire pulsed GMA W of which the output power is generally difficult to increase due to limitations of the power of semiconductors and the power density of magnetic devices. In the power supplies for the master and slave arcs, the digital signal processor (DSP) TMS320F28335 is used to form the DSP- based synergic control system for parallel high-power pulsed GMA W, which achieves high-power output of two parallel inverters controlled by a single DSP ; master-slave communication is achieved by using e controller area network (eCAN)module of DSP, thas realizing anti-phase pulse output of high-power twin-wire pulsed GMA W and reducing the interference between twin arcs. The experiment results demonstrate that the designed inverter power supply system for high-power twin-wire pulsed GMAW can bring about high-power efficiency of welding, stable welding process and proper formation of welds.展开更多
Hadamard synergic control is a new kind of control problem which is achieved via a composite strategy of the state feedback control and the direct regulation of the part of connection coefficients of system state vari...Hadamard synergic control is a new kind of control problem which is achieved via a composite strategy of the state feedback control and the direct regulation of the part of connection coefficients of system state variables. Such a control is actually used very often in the practical areas. In this paper, we discuss Hadamard synergic stabilization problem for a class of dynamical networks. We analyze three cases: 1) Synergic stabilization problem for the general twonodenetwork. 2) Synergic stabilization problem for a special kind of networks. 3) Synergic stabilization problem for special kind of networks with communication timedelays. The mechanism of the synergic action between two control strategies: feedback control and the connection coefficients regulations are presented.展开更多
Objective To investigate a new approach of the combined use of trichosanthin (TCS) andrecombinant interferon alpha - 2b (rIFN α- 2b) against digestive system cancer cells. Methods Detect separatelythe cytotoxicity of...Objective To investigate a new approach of the combined use of trichosanthin (TCS) andrecombinant interferon alpha - 2b (rIFN α- 2b) against digestive system cancer cells. Methods Detect separatelythe cytotoxicity of TCS, rIFN α- 2b and their combination against digestive system cancer cell SGC- 7901.Results In the experiment in vitro, TCS, rIFN α- 2b both had direct, dose dependent cytotoxicity againstSGC - 7901. Their combined use demonstrated a toxicity signijicantly higher than that of the two drugs used alone,showing a signilicant synergic effect. This synergic cytotoxicity was confirmed in the animal experiment.Conclusion Combined use of TCS and rIFN α - 2b decreases the therapeutic dose of TCS and its toxic adverseellect, and this synergic effect is favorable to the clinical use of TCS protein against gastric cancer.展开更多
Water-splitting reactions such as the hydrogen evolution reaction(HER)and the oxygen evolution reaction(OER)typically require expensive noble metal-based electrocatalysts.This has motivated researchers to develop nove...Water-splitting reactions such as the hydrogen evolution reaction(HER)and the oxygen evolution reaction(OER)typically require expensive noble metal-based electrocatalysts.This has motivated researchers to develop novel,cost-effective electrocatalytic systems.In this study,a new multicomponent nanocomposite was assembled by combining functionalized multiwalled carbon nanotubes,a Cu-based metal–organic framework(MOF)(HKUST-1 or HK),and a sulfidized NiMn-layered double hydroxide(NiMn-S).The resulting nanocomposite,abbreviated as MW/HK/NiMn-S,features a unique architecture,high porosity,numerous electroactive Cu/Ni/Mn sites,fast charge transfer,excellent structural stability,and conductivity.At a current density of 10 mA cm-2,this dual-function electrocatalyst shows remarkable performance,with ultralow overpotential values of 163 mV(OER)or 73 mV(HER),as well as low Tafel slopes(57 and 75 mV dec-1,respectively).Additionally,its high turnover frequency values(4.43 s-1 for OER;3.96 s-1 for HER)are significantly superior to those of standard noble metal-based Pt/C and IrO2 systems.The synergistic effect of the nanocomposite's different components is responsible for its enhanced electrocatalytic performance.A density functional theory study revealed that the multi-interface and multicomponent heterostructure contribute to increased electrical conductivity and decreased energy barrier,resulting in superior electrocatalytic HER/OER activity.This study presents a novel vision for designing advanced electrocatalysts with superior performance in water splitting.Various composites have been utilized in water-splitting applications.This study investigates the use of the MW/HK/NiMn-S electrocatalyst for water splitting for the first time to indicate the synergistic effect between carbon-based materials along with layered double hydroxide compounds and porous compounds of MOF.The unique features of each component in this composite can be an interesting topic in the field of water splitting.展开更多
The demand of high-end electromagnetic wave absorbing materials puts forward higher requirements on comprehensive performances of small thickness,lightweight,broadband,and strong absorption.Herein,a novel multi-layer ...The demand of high-end electromagnetic wave absorbing materials puts forward higher requirements on comprehensive performances of small thickness,lightweight,broadband,and strong absorption.Herein,a novel multi-layer stepped metamaterial absorber with gradient electromagnetic properties is proposed.The complex permittivity and permeability of each layer are tailored via the proportion of carbonyliron and carbon-fiber dispersing into the epoxy resin.The proposed metamaterial is further optimized via adjusting the electromagnetic parameters and geometric sizes of each layer.Comparing with the four-layer composite with gradient electromagnetic properties which could only realize reflection loss(RL)of less than−6 dB in 2.0-40 GHz,the optimized stepped metamaterial with the same thickness and electromagnetic properties realizes less than−10 dB in the relevant frequency range.Additionally,the RL of less than−15 dB is achieved in the frequency range of 11.2-21.4 GHz and 28.5-40 GHz.The multiple electromagnetic wave absorption mechanism is discussed based on the experimental and simulation results,which is believed to be attributed to the synergy effect induced by multi-scale structures of the metamaterial.Therefore,combining multi-layer structures and periodic stepped structures into a novel gradient absorbing metamaterial would give new insights into designing microwave absorption devices for broadband electromagnetic protections.展开更多
Clostridioides difficile(C.difficile)is progressively colonizing humans and animals living with humans.During this process,hypervirulent strains and mutated toxin A and B of C.difficile(TcdA and TcdB)are originating a...Clostridioides difficile(C.difficile)is progressively colonizing humans and animals living with humans.During this process,hypervirulent strains and mutated toxin A and B of C.difficile(TcdA and TcdB)are originating and developing.While in healthy subjects colonization by C.difficile becomes a risk after the use of antibiotics that alter the microbiome,other categories of people are more susceptible to infection and at risk of relapse,such as those with inflammatory bowel disease(IBD).Recent in vitro studies suggest that this increased susceptibility could be due to the strong cytotoxic synergism between TcdB and proinflammatory cytokines the tumor necrosis factor-alpha and interferon-gamma(CKs).Therefore,in subjects with IBD the presence of an inflammatory state in the colon could be the driver that increases the susceptibility to C.difficile infection and its progression and relapses.TcdB is internalized in the cell via three receptors:chondroitin sulphate proteoglycan 4;poliovirus receptor-like 3;and Wnt receptor frizzled family.Chondroitin sulphate proteoglycan 4 and Wnt receptor frizzled family are involved in cell death by apoptosis or necrosis depending on the concentration of TcdB and cell types,while poliovirus receptor-like 3 induces only necrosis.It is possible that cytokines could also induce a greater expression of receptors for TcdB that are more involved in necrosis than in apoptosis.Therefore,in subjects with IBD there are the conditions:(1)For greater susceptibility to C.difficile infection,such as the inflammatory state,and abnormalities of the microbiome and of the immune system;(2)for the enhancement of the cytotoxic activity of TcdB+Cks;and(3)for a greater expression of TcdB receptors stimulated by cytokines that induce cell death by necrosis rather than apoptosis.The only therapeutic approach currently possible in IBD patients is monitoring of C.difficile colonization for interventions aimed at reducing tumor necrosis factor-alpha and interferon-gamma levels when the infection begins.The future perspective is to generate bacteriophages against C.difficile for targeted therapy.展开更多
Traditional Chinese medicine(TCM)has been practiced in China and surrounding countries for thousands of years and has gradually attracted the attention of Western countries.After reasonable compatibility,TCMs could pl...Traditional Chinese medicine(TCM)has been practiced in China and surrounding countries for thousands of years and has gradually attracted the attention of Western countries.After reasonable compatibility,TCMs could play the key role of enhancing efficacy and reducing toxicity,which has significant therapeutic advantages in the treatment of complex diseases in clinical practice.While the TCM compatibility is not the simple addition of drugs.Under the appropriate dosage ratio,multiple TCMs can play a synergistic role to realize the overall regulation of TCM treatment.Therefore,it is of critical essential to study the compatibility of TCM formula to promote TCM modernization,new drug development and clinical application.Recently,under the guidance of TCM theory,many researches on the composition,pharmacodynamic activity and pharmacokinetic properties of TCM formula have emerged by integrating new technologies and new methods,revealing the scientific connotation of the compatibility of TCM formula from different perspectives and levels.This paper introduces the research progress of compatibility rules from different levels of compatibility,compatibility for synergistic enhancement and detoxification,and application of cutting-edge technology,with representative cases,in order to provide ideas and references for further study on TCM compatibility.展开更多
Formaldehyde(HCHO)is a common indoor pollutant that is detrimental to human health.Its efficient removal has become an urgent demand to reduce the public health risk.In this work,Ag-MnO_(x)-based catalysts were prepar...Formaldehyde(HCHO)is a common indoor pollutant that is detrimental to human health.Its efficient removal has become an urgent demand to reduce the public health risk.In this work,Ag-MnO_(x)-based catalysts were prepared and activated under different atmosphere(i.e.,air,hydrogen(H_(2))and carbon monoxide(CO))for efficient oxidation of HCHO.The catalyst activated with CO(Ag/Mn-CO)displayed the highest activity among the tested samples with 90% conversion at 100℃ under a gas space velocity of 75,000 mL/(g_(cat)·hr).Complementary characterizations demonstrate that CO reduction treatment resulted in synergically regulated content of surface oxygen on support to adsorb/activate HCHO and size of Ag particle to dissociate oxygen to oxidize the adsorbed HCHO.In contrast,other catalysts lack for either abundant surface oxygen species or metallic silver with the appropriate particle size,so that the integrate activity is limited by one specific reaction step.This study contributes to elucidating the mechanisms regulating the oxidation activity of Ag-based catalysts.展开更多
The friction and wear properties of the electrolessly-deposited Ni-P-Gr-SiC composites were investigated. The effects of graphite content, load and rotation speed on the friction coefficient and wear resistance of the...The friction and wear properties of the electrolessly-deposited Ni-P-Gr-SiC composites were investigated. The effects of graphite content, load and rotation speed on the friction coefficient and wear resistance of the composite coatings were mainly investigated. The worn surface and cross section of the coatings were characterized by scanning electron microscopy and energy-dispersive X-ray analysis. The results show that the composite coatings reveal good antifriction and wear resistance due to the synergic effect of graphite and SiC particles. The formation of graphite-rich mechanically mixed layer (GRMML) on the surface of Ni-P-Gr-SiC coating contributes to the good tribological behavior of the wear counterparts and SiC particles play a load bearing role in protecting GRMML from shearing easily.展开更多
基金Supported by National Key Technology R&D Program(No.2011BAG03B03)
文摘The three dimensional variable cross-section roll forming is a kind of new metal forming technol- ogy which combines large forming force, multi-axis linkage movement and space synergic movement, and the sequential synergic movement of the ganged roller group is used to complete the metal sheet forming according to the shape of the complicated and variable forming part data. The control system should meet the demands of quick response to the test requirements of the product part. A new kind of real time data driving multi-axis linkage and synergic movement control strategy of 3D roll forming is put forward in the paper. In the new control strategy, the forming data are automatically generated according to the shape of the parts, and the multi-axis linkage movement together with cooperative motion among the six stands of the 3D roll forming machine is driven by the real-time information, and the control nodes are also driven by the forming data. The new control strategy is applied to a 48 axis 3D roll forming machine developed by our research center, and the control servo period is less than 10ms. A forming experiment of variable cross section part is carried out, and the forming preci- sion is better than + 0.5mm by the control strategy. The result of the experiment proves that the control strategy has significant potentiality for the development of 3D roll forming production line with large scale, multi-axis ganged and svner^ic movement
文摘Dynamic Programming (DP) algorithm is used to find the optimal trajectories under Beijing cycle for the power management of synergic electric system (SES) which is composed of battery and super capacitor. Feasible rules are derived from analyzing the optimal trajectories, and it has the highest contribution to Hybrid Electric Vehicle (HEV). The methods of how to get the best performance is also educed. Using the new Rule-based power management strat-egy adopted from the optimal results, it is easy to demonstrate the effectiveness of the new strategy in further improvement of the fuel economy by the synergic hybrid system.
文摘This paper delves into the topic of synergic office system with utilizing J2EE exploring mode and technology about Struts-Spring-Hibernate frame,and illustrates the whole process of synergic office system exploration.
文摘A chest radiology scan can significantly aid the early diagnosis and management of COVID-19 since the virus attacks the lungs.Chest X-ray(CXR)gained much interest after the COVID-19 outbreak thanks to its rapid imaging time,widespread availability,low cost,and portability.In radiological investigations,computer-aided diagnostic tools are implemented to reduce intra-and inter-observer variability.Using lately industrialized Artificial Intelligence(AI)algorithms and radiological techniques to diagnose and classify disease is advantageous.The current study develops an automatic identification and classification model for CXR pictures using Gaussian Fil-tering based Optimized Synergic Deep Learning using Remora Optimization Algorithm(GF-OSDL-ROA).This method is inclusive of preprocessing and classification based on optimization.The data is preprocessed using Gaussian filtering(GF)to remove any extraneous noise from the image’s edges.Then,the OSDL model is applied to classify the CXRs under different severity levels based on CXR data.The learning rate of OSDL is optimized with the help of ROA for COVID-19 diagnosis showing the novelty of the work.OSDL model,applied in this study,was validated using the COVID-19 dataset.The experiments were conducted upon the proposed OSDL model,which achieved a classification accuracy of 99.83%,while the current Convolutional Neural Network achieved less classification accuracy,i.e.,98.14%.
基金supported by Shahrekord University of Medical Sciences,Shahrekord,Iran(Ethics Code:IR.SKUMS.REC.1397.119,Grant No.3696 and Ethics Code:IR.SKUMS.REC.1401.197,Grant No.6651).
文摘Background:Despite the availability of chemotherapy drugs such as 5-fluorouracil(5-FU),the treatment of some cancers such as gastric cancer remains challenging due to drug resistance and side effects.This study aimed to investigate the effect of celastrol in combination with the chemotherapy drug 5-FU on proliferation and induction of apoptosis in human gastric cancer cell lines(AGS and EPG85-257).Materials and Methods:In this in vitro study,AGS and EPG85-257 cells were treated with different concentrations of celastrol,5-FU,and their combination.Cell proliferation was assessed using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide(MTT)assay.The synergistic effect of 5-FU and celastrol was studied using Compusyn software.The DNA content at different phases of the cell cycle and apoptosis rate was measured usingflow cytometry.Results:Co-treatment with low concentrations(10%inhibitory concentration(IC10))of celastrol and 5-FU significantly reduced IC50(p<0.05)so that 48 h after treatment,IC50 was calculated at 3.77 and 6.9μM for celastrol,20.7 and 11.6μM for 5-FU,and 5.03 and 4.57μM for their combination for AGS and EPG85-257 cells,respectively.The mean percentage of apoptosis for AGS cells treated with celastrol,5-FU,and their combination was obtained 23.9,41.2,and 61.9,and for EPG85-257 cells 5.65,46.9,and 55.7,respectively.In addition,the 5-FU and celastrol-5-FU combination induced cell cycle arrest in the synthesis phase.Conclusions:Although celastrol could decrease the concentration of 5-fluorouracil that sufficed to suppress gastric cancer cells,additional studies are required to arrive at conclusive evidence on the anticancer effects of celastrol.
基金supported by CNPq(303416/2018-1)and FAPESP(2019/25867-3).
文摘This study was conducted to evaluate the effectiveness of enzymes in purifying and reducing the degree of polymerization of cellulose for the production of dissolving pulp.Our goal was to determine the contributions of xylanase(X)and endoglucanase(EG)in the treatment of pulp,specifically by quantifying the formation of soluble and insoluble reducing sugars using the dinitrosalycilic acid(DNS)test.Predominantly,the release of soluble reducing sugars(RSSol)was enhanced after xylanase treatment,while endoglucanase(EG)treatment led to changes in insoluble reducing sugars(RSIns).The maximum synergism was observed for RSIns when a high ratio of endoglucanase to xylanase(320EG:5X/g pulp)was used.The relative contribution of endoglucanase to RSins was determined to be 15.6%of the total reducing sugar.The viscosity of pulps treated with xylanase decreased only by 7%,whereas endoglucanase treatment significantly reduced viscosity by 45%.Modifications in the particle size were observed after pulp treatment with the combination of endoglucanase and xylanase.In summary,the DNS test is a rapid and effective method for evaluating the efficiency of enzyme treatments on pulps.The measurement of RSIns correlates with changes in pulp viscosity to different extents,providing valuable insights into the effectiveness of enzyme treatments.
基金The National Key Technology R&D Program of China during the 11th Five-Year Plan Period(No.2006BAH02A06)
文摘The procedure of supply chain development is the process of continuously congregating knowledge and transforming knowledge.First,the precondition of synergic knowledge innovation in the supply chain is narrated.Then the characteristics of synergic knowledge innovation in the supply chain are analyzed,including complexity,accumulating and evolving process,and the cooperation of members and network integration.Due to the characteristics of multi-factors and uncertainties of the supply chain system,the fuzzy multi-attribution group decision-making model is introduced to solve the involved problem of synergic knowledge innovation in the supply chain.After elaborating on steps of using the fuzzy multiple attribute decision-making(MADM)model,the procedure of decision making for synergic knowledge innovation in the supply chain is explained from an example in the application of a fuzzy MADM model.The fuzzy MADM model,which amalgamates intuition and resolution decision-making can effectively improve the rationality of decision-making for synergic knowledge innovation in the supply chain.
文摘Background:More and more consumers are paying attention to skin rejuvenation.However,there is a lack of a non-invasive and efficient solution.Objective:To evaluate the efficacy of a trinity permeation synergism(TPS),which consists of a firming essence,an atomizer and a photoelectric penetrator,for facial anti-aging efficacy.Material and methods:In this work,in vitro cell experiments and human efficacy study were used to evaluate the firming and anti-wrinkle effects.Cell experiments were used to verify the effect of the firming essence on the cell proliferation,migration,and anti-inflammation in keratinocytes(HaCaT),and on the gene expression levels of type I and type III collagen(Col-1 and Col-3)and type I matrix metalloproteinase(MMP-1)in human skin fibroblasts(HSF).After in vitro test,60 women aged 35–60 years were enrolled in the randomized test,of which 30 subjects were randomly selected to be the experimental group and treated with the TPS system,while the left 30 subjects were treated with the firming essence only considered as control.After 28 days,skin elasticity,skin redness value,and skin wrinkles were measured to evaluate the efficacy of the TPS system.Results:Cell experiments showed that the firming essence can significantly improve the proliferation and the migration of HaCaT cells.It also promoted the expression level of Col-1 and Col-3 gene,and inhibited the expression level of MMP-1 gene in HSF cells.After confirming the efficacy of firming essence,the efficacy benefit of the TPS was further studied.The 28-day tests show that combined use firming essence with atomizer and penetrator can significantly increase skin elasticity,reduce skin hemoglobin value and skin wrinkles on Day 28.Moreover,all the mentioned improvements are significantly better than that in the control group.Conclusion:Through efficient delivery in the whole process,TPS boosts the efficacy of active components in the firming essence.TPS offers an efficient,non-invasive,and convenient way for enhanced facial rejuvenation efficacy.
文摘The synergistic interaction between the cationic guar gum (the ammonium hydroxy-propyl-trimethyl chloride of guar gum) and sodium alginate has been studied. The effects of the mass ratio of them, mixed temperature, balk salt ion concentration, incubation time and pH value on gelation were investigated. It has been observed that there was a gel strength maximum when the mass ratio was 0.6, the mixed temperature was 70°C, the balk salt ion concentration was 1.0 mol·L?1, the incubation time was 30 min and the pH value was 8. Interaction between molecules of these two polysaccharides was investigated by FT-IR spectrometry. Key words cationic guar gum - sodium alginate - gelation - synergism CLC number O 629.12 Foundation item: Supported by the National Natural Science Foundation of China(29574173)Biography: He Dong-bao (1945-), male, Associate professor, research direction: modifying and gelating of natural polysaccharides.
基金Supported by the Collaborative Innovation of Funding of Meteorological Science and Technique in Huang-Bohai Region(QYXM201801)
文摘To study the cooperative development mechanism of ocean meteorological modernization of Huang-Bohai,we analyze the situation of ocean meteorological modernization in Huang-Bohai with the method of an new five-force model and the analyses of strengths,weaknesses,opportunities and threats (SWOT analysis).As the research results shown,the advantages of ocean meteorological modernization of Huang-Bohai mainly include three aspects which are ocean meteorological observation system,ocean meteorological warning information release and the construction of ocean meteorological center;the disadvantages contain that stereo-observation ability of the ocean meteorology is insufficiency,and the precision forecast technology and the cooperative development are deficiency in ocean meteorology;opportunities also include three aspects which are "The Belt and Road",and development of new technology and new warning system on meteorology disasters;threats mainly contain the main influencing weather system,the potential social competition and hazard factors.The use of different functions and combination innovation of five forces,i.e.,attractiveness,cohesiveness,radiating power,repulsiveness and affinity,could promote the cooperative development of ocean meteorological modernization in the Huang-Bohai.
基金Supported by National Natural Science Foundation of China(No.51205136)Ph.D. Programs Foundation of the Ministry of Education of China(No.20100172120003)+1 种基金Competitive Allocation Project Special Fund of Guangdong Province Chinese Academy of Sciences Comprehensive Strategic Cooperation(No.2013B091500082)The Fundamental Research Funds for the Central Universities(Key Program)(No.2015ZZ084)
文摘A type of novel inverter power supply system for high-power twin-wire pulsed gas metal arc welding (GMAW) is presented mainly for dealing with the disadvantages of the conventional power supply for twin-wire pulsed GMA W of which the output power is generally difficult to increase due to limitations of the power of semiconductors and the power density of magnetic devices. In the power supplies for the master and slave arcs, the digital signal processor (DSP) TMS320F28335 is used to form the DSP- based synergic control system for parallel high-power pulsed GMA W, which achieves high-power output of two parallel inverters controlled by a single DSP ; master-slave communication is achieved by using e controller area network (eCAN)module of DSP, thas realizing anti-phase pulse output of high-power twin-wire pulsed GMA W and reducing the interference between twin arcs. The experiment results demonstrate that the designed inverter power supply system for high-power twin-wire pulsed GMAW can bring about high-power efficiency of welding, stable welding process and proper formation of welds.
文摘Hadamard synergic control is a new kind of control problem which is achieved via a composite strategy of the state feedback control and the direct regulation of the part of connection coefficients of system state variables. Such a control is actually used very often in the practical areas. In this paper, we discuss Hadamard synergic stabilization problem for a class of dynamical networks. We analyze three cases: 1) Synergic stabilization problem for the general twonodenetwork. 2) Synergic stabilization problem for a special kind of networks. 3) Synergic stabilization problem for special kind of networks with communication timedelays. The mechanism of the synergic action between two control strategies: feedback control and the connection coefficients regulations are presented.
文摘Objective To investigate a new approach of the combined use of trichosanthin (TCS) andrecombinant interferon alpha - 2b (rIFN α- 2b) against digestive system cancer cells. Methods Detect separatelythe cytotoxicity of TCS, rIFN α- 2b and their combination against digestive system cancer cell SGC- 7901.Results In the experiment in vitro, TCS, rIFN α- 2b both had direct, dose dependent cytotoxicity againstSGC - 7901. Their combined use demonstrated a toxicity signijicantly higher than that of the two drugs used alone,showing a signilicant synergic effect. This synergic cytotoxicity was confirmed in the animal experiment.Conclusion Combined use of TCS and rIFN α - 2b decreases the therapeutic dose of TCS and its toxic adverseellect, and this synergic effect is favorable to the clinical use of TCS protein against gastric cancer.
基金Iran National Science Foundation(INSF)under project No.4025105the Foundation of State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering(Grant No.2022-K31)+1 种基金the Zhejiang Province Key Research and Development Project(2023 C01191)Alexander M.Kirillov acknowledges the Foundation for Science and Technology(LISBOA-01-0145-FEDER-029697,PTDC/QUIQIN/3898/2020,LA/P/0056/2020,UIDB/00100/2020).
文摘Water-splitting reactions such as the hydrogen evolution reaction(HER)and the oxygen evolution reaction(OER)typically require expensive noble metal-based electrocatalysts.This has motivated researchers to develop novel,cost-effective electrocatalytic systems.In this study,a new multicomponent nanocomposite was assembled by combining functionalized multiwalled carbon nanotubes,a Cu-based metal–organic framework(MOF)(HKUST-1 or HK),and a sulfidized NiMn-layered double hydroxide(NiMn-S).The resulting nanocomposite,abbreviated as MW/HK/NiMn-S,features a unique architecture,high porosity,numerous electroactive Cu/Ni/Mn sites,fast charge transfer,excellent structural stability,and conductivity.At a current density of 10 mA cm-2,this dual-function electrocatalyst shows remarkable performance,with ultralow overpotential values of 163 mV(OER)or 73 mV(HER),as well as low Tafel slopes(57 and 75 mV dec-1,respectively).Additionally,its high turnover frequency values(4.43 s-1 for OER;3.96 s-1 for HER)are significantly superior to those of standard noble metal-based Pt/C and IrO2 systems.The synergistic effect of the nanocomposite's different components is responsible for its enhanced electrocatalytic performance.A density functional theory study revealed that the multi-interface and multicomponent heterostructure contribute to increased electrical conductivity and decreased energy barrier,resulting in superior electrocatalytic HER/OER activity.This study presents a novel vision for designing advanced electrocatalysts with superior performance in water splitting.Various composites have been utilized in water-splitting applications.This study investigates the use of the MW/HK/NiMn-S electrocatalyst for water splitting for the first time to indicate the synergistic effect between carbon-based materials along with layered double hydroxide compounds and porous compounds of MOF.The unique features of each component in this composite can be an interesting topic in the field of water splitting.
基金financially supported by the National Natural Science Foundation of China (No. 52102113)the Nature Science Foundation of Shaanxi in China (No. 2022JQ-323)+1 种基金the Creative Research Foundation of the Science and Technology on Thermostructural Composite Materials LaboratoryNatural Science Foundation and Department of Education of Shaanxi in China (No. 21JK0912)
文摘The demand of high-end electromagnetic wave absorbing materials puts forward higher requirements on comprehensive performances of small thickness,lightweight,broadband,and strong absorption.Herein,a novel multi-layer stepped metamaterial absorber with gradient electromagnetic properties is proposed.The complex permittivity and permeability of each layer are tailored via the proportion of carbonyliron and carbon-fiber dispersing into the epoxy resin.The proposed metamaterial is further optimized via adjusting the electromagnetic parameters and geometric sizes of each layer.Comparing with the four-layer composite with gradient electromagnetic properties which could only realize reflection loss(RL)of less than−6 dB in 2.0-40 GHz,the optimized stepped metamaterial with the same thickness and electromagnetic properties realizes less than−10 dB in the relevant frequency range.Additionally,the RL of less than−15 dB is achieved in the frequency range of 11.2-21.4 GHz and 28.5-40 GHz.The multiple electromagnetic wave absorption mechanism is discussed based on the experimental and simulation results,which is believed to be attributed to the synergy effect induced by multi-scale structures of the metamaterial.Therefore,combining multi-layer structures and periodic stepped structures into a novel gradient absorbing metamaterial would give new insights into designing microwave absorption devices for broadband electromagnetic protections.
文摘Clostridioides difficile(C.difficile)is progressively colonizing humans and animals living with humans.During this process,hypervirulent strains and mutated toxin A and B of C.difficile(TcdA and TcdB)are originating and developing.While in healthy subjects colonization by C.difficile becomes a risk after the use of antibiotics that alter the microbiome,other categories of people are more susceptible to infection and at risk of relapse,such as those with inflammatory bowel disease(IBD).Recent in vitro studies suggest that this increased susceptibility could be due to the strong cytotoxic synergism between TcdB and proinflammatory cytokines the tumor necrosis factor-alpha and interferon-gamma(CKs).Therefore,in subjects with IBD the presence of an inflammatory state in the colon could be the driver that increases the susceptibility to C.difficile infection and its progression and relapses.TcdB is internalized in the cell via three receptors:chondroitin sulphate proteoglycan 4;poliovirus receptor-like 3;and Wnt receptor frizzled family.Chondroitin sulphate proteoglycan 4 and Wnt receptor frizzled family are involved in cell death by apoptosis or necrosis depending on the concentration of TcdB and cell types,while poliovirus receptor-like 3 induces only necrosis.It is possible that cytokines could also induce a greater expression of receptors for TcdB that are more involved in necrosis than in apoptosis.Therefore,in subjects with IBD there are the conditions:(1)For greater susceptibility to C.difficile infection,such as the inflammatory state,and abnormalities of the microbiome and of the immune system;(2)for the enhancement of the cytotoxic activity of TcdB+Cks;and(3)for a greater expression of TcdB receptors stimulated by cytokines that induce cell death by necrosis rather than apoptosis.The only therapeutic approach currently possible in IBD patients is monitoring of C.difficile colonization for interventions aimed at reducing tumor necrosis factor-alpha and interferon-gamma levels when the infection begins.The future perspective is to generate bacteriophages against C.difficile for targeted therapy.
基金supported by grants from the Shaanxi Key Laboratory of Research on TCM Physical Constitution and Disease Prevention and Treatment (Program No.KF2207)the Key Research and Development Program of Shaanxi (Program No.2020GXLH-Y-019,2022KXJ-141)+1 种基金the Innovation Capability Support Program of Shaanxi (Program No.2019GHJD-14,2021TD-40)Science and Technology Talent Support Program of Shaanxi Provincial People’s Hospital (Program No.2021LJ-05).
文摘Traditional Chinese medicine(TCM)has been practiced in China and surrounding countries for thousands of years and has gradually attracted the attention of Western countries.After reasonable compatibility,TCMs could play the key role of enhancing efficacy and reducing toxicity,which has significant therapeutic advantages in the treatment of complex diseases in clinical practice.While the TCM compatibility is not the simple addition of drugs.Under the appropriate dosage ratio,multiple TCMs can play a synergistic role to realize the overall regulation of TCM treatment.Therefore,it is of critical essential to study the compatibility of TCM formula to promote TCM modernization,new drug development and clinical application.Recently,under the guidance of TCM theory,many researches on the composition,pharmacodynamic activity and pharmacokinetic properties of TCM formula have emerged by integrating new technologies and new methods,revealing the scientific connotation of the compatibility of TCM formula from different perspectives and levels.This paper introduces the research progress of compatibility rules from different levels of compatibility,compatibility for synergistic enhancement and detoxification,and application of cutting-edge technology,with representative cases,in order to provide ideas and references for further study on TCM compatibility.
基金supported by the National Natural Science Foundation of China(Nos.22025604,22106171,21936005,and 21976196)the Jinan“20 Universities”Funding Project(No.2020GXRC027)。
文摘Formaldehyde(HCHO)is a common indoor pollutant that is detrimental to human health.Its efficient removal has become an urgent demand to reduce the public health risk.In this work,Ag-MnO_(x)-based catalysts were prepared and activated under different atmosphere(i.e.,air,hydrogen(H_(2))and carbon monoxide(CO))for efficient oxidation of HCHO.The catalyst activated with CO(Ag/Mn-CO)displayed the highest activity among the tested samples with 90% conversion at 100℃ under a gas space velocity of 75,000 mL/(g_(cat)·hr).Complementary characterizations demonstrate that CO reduction treatment resulted in synergically regulated content of surface oxygen on support to adsorb/activate HCHO and size of Ag particle to dissociate oxygen to oxidize the adsorbed HCHO.In contrast,other catalysts lack for either abundant surface oxygen species or metallic silver with the appropriate particle size,so that the integrate activity is limited by one specific reaction step.This study contributes to elucidating the mechanisms regulating the oxidation activity of Ag-based catalysts.
基金Project (51204105) supported by the National Natural Science Foundation of ChinaProject (11ZR1418000) supported by the Shanghai Natural Science Foundation, China
文摘The friction and wear properties of the electrolessly-deposited Ni-P-Gr-SiC composites were investigated. The effects of graphite content, load and rotation speed on the friction coefficient and wear resistance of the composite coatings were mainly investigated. The worn surface and cross section of the coatings were characterized by scanning electron microscopy and energy-dispersive X-ray analysis. The results show that the composite coatings reveal good antifriction and wear resistance due to the synergic effect of graphite and SiC particles. The formation of graphite-rich mechanically mixed layer (GRMML) on the surface of Ni-P-Gr-SiC coating contributes to the good tribological behavior of the wear counterparts and SiC particles play a load bearing role in protecting GRMML from shearing easily.