We have designed and prepared β-cyclodextrin (β-CD)-functionalized multi-walled nanotubes (MWCNTs-g-CD) for the oxidation of cinnamon oil to natural benzaldehyde under aqueous condi- tions. The synergistic effec...We have designed and prepared β-cyclodextrin (β-CD)-functionalized multi-walled nanotubes (MWCNTs-g-CD) for the oxidation of cinnamon oil to natural benzaldehyde under aqueous condi- tions. The synergistic effect of combining MWCNTs with β-CD led to a remarkable increase in the performance of the MWCNTs-g-CD for the catalytic oxidation of cinnamaldehyde, which exhibited 95% cinnamaldehyde conversion and 85% selectivity to natural benzaldehyde with a short reaction time of 10 rain. The MWCNTs-g-CD also exhibited outstanding recyclability with good stability, showing no discernible decrease in their catalytic activity over five reaction cycles.展开更多
N-acetylglucosamine(GlcNAc)is an amino monosaccharide that has a variety of bioactivities and is widely used in pharmaceutical and food industries.Production of GlcNAc by chitin hydrolysis is limited by the supply of ...N-acetylglucosamine(GlcNAc)is an amino monosaccharide that has a variety of bioactivities and is widely used in pharmaceutical and food industries.Production of GlcNAc by chitin hydrolysis is limited by the supply of raw materials and encounters the risk of shellfish protein contamination.For efficient biosynthesis of GlcNAc,one challenge is to balance the carbon distribution between growth and production.Here,we applied the strategy of synergistic carbon utilization,in which glycerol supports cell growth and provides the acetyl group of GlcNAc while glucose serves as the precursor to glucosamine.The efficiency of GlcNAc production was stepwise improved by blocking the product re-uptake and degradation,strengthening the biosynthetic pathway and synergistically utilizing two carbon sources.With these efforts,the final strain produced 41.5 g/L GlcNAc with a yield of 0.49 g/g of total carbon sources.In addition,we also explored the feasibility of using acetate as a cheap carbon source to partly replace glycerol.This study provides a promising alternative strategy for sustainable and efficient pro-duction of GlcNAc.展开更多
To commercialize fuel cells and metal-air batteries, cost-effective, highly active catalysts for the oxygen reduction reaction (ORR) must be developed. Herein, we describe the development of low-cost, heteroatom (N...To commercialize fuel cells and metal-air batteries, cost-effective, highly active catalysts for the oxygen reduction reaction (ORR) must be developed. Herein, we describe the development of low-cost, heteroatom (N, P, Fe) ternary-doped, porous carbons (HDPC). These materials are prepared by one-step pyrolysis of natural tea leaves treated with an iron salt, without any chemical and physical activation. The natural structure of the tea leaves provide a 3D hierarchical porous structure after carbonization. Moreover, heteroatom containing organic compounds in tea leaves act as precursors to functionalize the resultant carbon frameworks. In addition, we found that the polyphenols present in tea leaves act as ligands, reacting with Fe ions to form coordination compounds; these complexes acted as the precursors for Fe and N active sites. After pyrolysis, the as-prepared HDPC electrocatalysts, especially HDPC-800 (pyrolyzed at 800℃), had more positive onsets, half-wave potentials, and higher catalytic activities for the ORR, which proceeds via a direct four-electron reaction pathway in alkaline media, similar to commercial Pt/C catalysts. Furthermore, HDPC-X also showed enhanced durability and better tolerance to methanol crossover and CO poisoning effects in comparison to commercial Pt/C, making them promising alternatives for state-of-the-art ORR electrocatalysts for electrochemical energy conversion. The method used here provides valuable guidelines for the design of high-performance ORR electrocatalysts from natural sources at the industrial scale.展开更多
基金supported by the National Natural Science Foundation of China (21376279, 21276102, 21425627)Guangdong Technology Research Center for Synthesis and Separation of Thermosensitive Chemicals (2015B090903061)+1 种基金the Fundamental Research Funds for the Central Universities (14lgpy28)Guangzhou Science and Technology Plan Projects (2014J4100125)~~
文摘We have designed and prepared β-cyclodextrin (β-CD)-functionalized multi-walled nanotubes (MWCNTs-g-CD) for the oxidation of cinnamon oil to natural benzaldehyde under aqueous condi- tions. The synergistic effect of combining MWCNTs with β-CD led to a remarkable increase in the performance of the MWCNTs-g-CD for the catalytic oxidation of cinnamaldehyde, which exhibited 95% cinnamaldehyde conversion and 85% selectivity to natural benzaldehyde with a short reaction time of 10 rain. The MWCNTs-g-CD also exhibited outstanding recyclability with good stability, showing no discernible decrease in their catalytic activity over five reaction cycles.
基金supported by the National Key Research and Development Program of China(2018YFA0901800)the National Natural Science Foundation of China(21978015).
文摘N-acetylglucosamine(GlcNAc)is an amino monosaccharide that has a variety of bioactivities and is widely used in pharmaceutical and food industries.Production of GlcNAc by chitin hydrolysis is limited by the supply of raw materials and encounters the risk of shellfish protein contamination.For efficient biosynthesis of GlcNAc,one challenge is to balance the carbon distribution between growth and production.Here,we applied the strategy of synergistic carbon utilization,in which glycerol supports cell growth and provides the acetyl group of GlcNAc while glucose serves as the precursor to glucosamine.The efficiency of GlcNAc production was stepwise improved by blocking the product re-uptake and degradation,strengthening the biosynthetic pathway and synergistically utilizing two carbon sources.With these efforts,the final strain produced 41.5 g/L GlcNAc with a yield of 0.49 g/g of total carbon sources.In addition,we also explored the feasibility of using acetate as a cheap carbon source to partly replace glycerol.This study provides a promising alternative strategy for sustainable and efficient pro-duction of GlcNAc.
基金Acknowledgements The authors thank the financial support by the National Natural Science Foundation of China (No. 51273008 and 51473008), the National High-Tech Research and Development Program (No. 2012AA030305), the National Basic Research Program (No. 2012CB933200), and NSF (No. CMMI-1400274 and AIR-IIP-1343270).
文摘To commercialize fuel cells and metal-air batteries, cost-effective, highly active catalysts for the oxygen reduction reaction (ORR) must be developed. Herein, we describe the development of low-cost, heteroatom (N, P, Fe) ternary-doped, porous carbons (HDPC). These materials are prepared by one-step pyrolysis of natural tea leaves treated with an iron salt, without any chemical and physical activation. The natural structure of the tea leaves provide a 3D hierarchical porous structure after carbonization. Moreover, heteroatom containing organic compounds in tea leaves act as precursors to functionalize the resultant carbon frameworks. In addition, we found that the polyphenols present in tea leaves act as ligands, reacting with Fe ions to form coordination compounds; these complexes acted as the precursors for Fe and N active sites. After pyrolysis, the as-prepared HDPC electrocatalysts, especially HDPC-800 (pyrolyzed at 800℃), had more positive onsets, half-wave potentials, and higher catalytic activities for the ORR, which proceeds via a direct four-electron reaction pathway in alkaline media, similar to commercial Pt/C catalysts. Furthermore, HDPC-X also showed enhanced durability and better tolerance to methanol crossover and CO poisoning effects in comparison to commercial Pt/C, making them promising alternatives for state-of-the-art ORR electrocatalysts for electrochemical energy conversion. The method used here provides valuable guidelines for the design of high-performance ORR electrocatalysts from natural sources at the industrial scale.