期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Ag-Ni alloy nanoparticles for electrocatalytic reduction of benzyl chloride
1
作者 周海晖 李艳玲 +3 位作者 黄家琦 方晨旭 单丹 旷亚非 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第12期4001-4007,共7页
Ag-based nanocatalysts exhibit good catalytic activity for the electrochemical reduction of organic halides. Ag-Ni alloy nanoparticles(NPs) were facilely prepared by chemical reduction, and the as-prepared nanocatal... Ag-based nanocatalysts exhibit good catalytic activity for the electrochemical reduction of organic halides. Ag-Ni alloy nanoparticles(NPs) were facilely prepared by chemical reduction, and the as-prepared nanocatalysts were characterized by X-ray diffraction, ultraviolet-visible spectroscopy, transmission electron microscopy and energy-dispersive X-ray spectroscopy. The electrocatalytic activity of Ag-Ni NPs for benzyl chloride reduction was studied in organic medium using cyclic voltammetry, chronoamperometry and electrochemical impedance spectroscopy. The results show that the addition of Ni element can obviously decrease the size of Ag-Ni NPs, shift the reduction peak potential(φp) of benzyl chloride positively, and increase the catalytic activity of Ag-Ni NPs. However, when the Ni content reaches a certain value, the catalytic activity of Ag-Ni NPs decreases. Meanwhile, the synergistic catalytic effect of Ag-Ni NPs was also discussed. 展开更多
关键词 Ag-Ni nanoparticles benzyl chloride synergistic catalytic effect ELECTROREDUCTION
下载PDF
In Situ Coupling of Highly Dispersed Ni/Fe Metal-NC Sites and N-Doped 3D Carbon Fibers Toward Free-Standing Bifunctional Cathode for Flexible Zinc-Air Battery
2
作者 Chenglong Lai Mengjun Li +5 位作者 Yi Shen Min Zhou Wei Wang Kai Jiang Haomiao Li Kangli Wang 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第1期121-130,共10页
Designing flexible free-standing air-electrode with efficient OER/ORR performance is of vital importance for the application of Zinc-air batteries in flexible electronics.Herein,a flexible free-standing electrode(Ni/F... Designing flexible free-standing air-electrode with efficient OER/ORR performance is of vital importance for the application of Zinc-air batteries in flexible electronics.Herein,a flexible free-standing electrode(Ni/Fe-NC/NCF/CC)is synthesized by in-situ coupling of binary Ni/Fe-NC nanocubes and N-doped carbon nanofibers(NCF)rooted on carbon cloth.The highly dispersed binary Ni/Fe-NC sites ensure excellent ORR activity and create efficient OER active sites relative to Ni-NC and Fe-NC.The in-situ coupling of Ni/Fe-NC and NCF constructs a 3D interconnected network structure that not only provides abundant and stabilized reactive sites but also guarantees fast electron transfer and gas transportation,thus achieving efficient and fast operation of ORR/OER.Therefore,Ni/Fe-NC/NCF/CC displays a much positive potential(0.952 V)at 4.0 mA cm^(-2)for ORR and a low OER overpotential(310 mV)at 50 mA cm^(-2).The Zinc-air battery with Ni/Fe-NC/NCF/CC air-electrode exhibits excellent battery performance with outstanding discharge/charge durability for 2150 cycles.The flexible Zn-air batteries with foldable mechanical properties display a high power density of 105.0 mW cm^(-2).This work widened the way to prepare flexible bifunctional air-electrode by designing composition/structure and in-situ coupling. 展开更多
关键词 binary Ni/Fe-NC sites in-situ coupling synergistic catalytic effect Zn-air battery
下载PDF
Anchoring Pt nanoparticles and Ti_(3)C_(2)T_(x)MXene nanosheets on CdS nanospheres as efficient synergistic photocatalysts for hydrogen evolution 被引量:2
3
作者 JIANG JiZhou XIONG ZhiGuo +3 位作者 WANG HaiTao XIANG Kun WU PingXiu ZOU Jing 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2022年第12期3020-3028,共9页
The development of a new-fashioned functional nanomaterial with an outstanding photocatalytic hydrogen evolution reaction(HER)activity under visible-light irradiation is a sustainable and promising strategy to cope wi... The development of a new-fashioned functional nanomaterial with an outstanding photocatalytic hydrogen evolution reaction(HER)activity under visible-light irradiation is a sustainable and promising strategy to cope with the increasingly serious global energy crisis.Herein,an advanced ternary photocatalytic HER catalyst,in which the Pt nanoparticles and Ti_(3)C_(2)T_(x)nanosheets are synchronously anchored on the surface of CdS nanospheres(Ti_(3)C_(2)T_(x)/Pt@CdS),is elaborately constructed via acid etching,sel-freduction,and solvothermal treatment.Therein,the synergistic promoting effect between Ti_(3)C_(2)T_(x)and Pt on the charge transfer of CdS effectively hinders the backtransfer of electrons to recombine with holes,resulting in a high-effective utilization of photoexcited charges.The obtained Ti_(3)C_(2)T_(x)/Pt@CdS possesses a superior photocatalytic HER activity compared to that of single active component catalyst.This work demonstrates the great potential of MXene materials in constructing high performance photocatalysts. 展开更多
关键词 Pt nanoparticles Ti_(3)C_(2)T_(x)MXene CdS nanospheres synergistic catalytic effect photocatalytic HER
原文传递
Fabrication of HRP/Bi_(2)WO_(6) photoenzyme-coupled artificial catalytic system for efficiently degrading bisphenol A 被引量:1
4
作者 Hongjun Dong Ning Song +4 位作者 Ming Yan Huihui Wu Haibo Zhang Changchang Ma Yun Wang 《Chinese Chemical Letters》 CSCD 2021年第6期2047-2051,共5页
A novel photoenzyme-coupled artificial catalytic system is fabricated by immobilizing horseradish peroxidase(HRP)on the Bi_(2)WO_(6)hollow nanospheres via a facile electrostatic self-assembly process.The obtained Bi_(... A novel photoenzyme-coupled artificial catalytic system is fabricated by immobilizing horseradish peroxidase(HRP)on the Bi_(2)WO_(6)hollow nanospheres via a facile electrostatic self-assembly process.The obtained Bi_(2)WO_(6)/HRP sample not only improves the visible light harvest ability but also promotes the high-efficiency separation of charge carriers.More importantly,the photogenerated electrons and produced H2O2 on Bi_(2)WO_(6)directly take part in redox cycle reactions of HRP to induce photoenzyme synergic catalytic effect.In consequence,the degradation activity of Bi_(2)WO_(6)/HRP is significantly improved relative to Bi_(2)WO_(6)and HRP for removing bisphenol A(BPA)under the visible light irradiation.This work launches a feasible design strategy for exploiting photoenzyme-coupled artificial catalytic system with special structure to degrade organic pollutants in water efficiently. 展开更多
关键词 Photoenzyme-coupled Bi_(2)WO_(6)/HRP synergistic catalytic effect BPA degradation Reaction mechanism
原文传递
Preparation of tungsten-iron composite oxides and application in environmental catalysis for volatile organic compounds degradation 被引量:6
5
作者 Jiang Liu Song-Lin Wang +5 位作者 Ji-Li Xuan Bo-Fang Shan Hong Luo Li-Ping Deng Peng Yang Chen-Ze Qi 《Tungsten》 2022年第1期38-51,共14页
Emission of volatile organic compounds has important influence on complex air pollution and human health.In this paper,a series of tungsten-iron composite oxides with different proportions and preparation methods were... Emission of volatile organic compounds has important influence on complex air pollution and human health.In this paper,a series of tungsten-iron composite oxides with different proportions and preparation methods were synthesized and first used for catalytic combustion of chlorobenzene and toluene,as typical polluting gas sources.These WO_(3)-based solid catalytic materials were systematically characterized by modern analytical methods,and the results showed that there was strong electron interaction between W and Fe elements in the composite oxides,and the presence of a certain amount of tungsten oxide inhibited the crystallization of iron oxide,and vice versa,which were beneficial to the uniform dispersion of tungsten-iron components into each other and the improvement of redox properties.Compared with single-component oxide,the formation of tungsten-iron composite oxide affected the micro-structure,improved the specific surface area and optimized the pore structure of materials.The performance test results showed that the tungsten-iron composite oxide(FeWO_4-0.5 Fe_(2)O_(3),molar ratio of tungsten and iron was 1/2)prepared using citric acid-based sol-gel method was the optimal,and its catalytic degradation efficiency could reach 90%for chlorobenzene and 83%for toluene at 320℃,and maintain at least 60 h without obvious deactivation,with high selectivity to the formation of HCl and CO_(2). 展开更多
关键词 Volatile organic compounds catalytic combustion WO_(3) FeWO_4 Composite oxide synergistic catalytic effect
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部