An observational study is presented to confirm that the life cycle of blocking associated with synoptic—scale eddies is a transfer process between dispersion and nondispersion. In addition, numerical experiments are ...An observational study is presented to confirm that the life cycle of blocking associated with synoptic—scale eddies is a transfer process between dispersion and nondispersion. In addition, numerical experiments are conducted. It is found that the synoptic—scale eddies seem to play a dominant role in the amplification of blocking, while the topography effect appears to play a phase-locking role. At the same time, the synoptic eddies tend to split into two branches during the onset of blocking. This supports the observational results obtained.展开更多
Knowledge of the statistical characteristics of inversions and their effects on aerosols under different large-scale synoptic circulations is important for studying and modeling the diffusion of pollutants in the boun...Knowledge of the statistical characteristics of inversions and their effects on aerosols under different large-scale synoptic circulations is important for studying and modeling the diffusion of pollutants in the boundary layer. Based on results gen- erated using the self-organizing map (SOM) weather classification method, this study compares the statistical characteristics of surface-based inversions (SBIs) and elevated inversions (EIs), and quantitatively evaluates the effect of SBIs on aerosol condensation nuclei (CN) concentrations and the relationship between temperature gradients and aerosols for six prevailing synoptic patterns over the the Southern Great Plains (SGP) site during 2001-10. Large-scale synoptic patterns strongly influ- ence the statistical characteristics of inversions and the accumulation of aerosols in the low-level atmosphere. The activity, frequency, intensity, and vertical distribution of inversions are significantly different among these synoptic patterns. The verti- cal distribution of inversions varies diurnally and is significantly different among the different synoptic patterns. Anticyclonic patterns affect the accumulation of aerosols near the ground more strongly than cyclonic patterns. Mean aerosol CN con- centrations increase during SBIs compared to no inversion cases by 16.1%, 22.6%, 24.5%, 58.7%, 29.8% and 23.7% for the six synoptic patterns. This study confirms that there is a positive correlation between temperature gradients and aerosol CN concentrations near the ground at night under similar large-scale synoptic patterns. The relationship is different for different synoptic patterns and can be described by linear functions. These findings suggest that large-scale synoptic patterns change the static stability of the atmosphere and inversions in the lower atmosphere, thereby influencing the diffusion of aerosols near the ground.展开更多
In this paper, in an equivalent barotropic framework a new forced nonlinear Schroedinger equation is proposed to examine the interaction between the planetary-scale waves and the localized synoptic-scale eddies upstre...In this paper, in an equivalent barotropic framework a new forced nonlinear Schroedinger equation is proposed to examine the interaction between the planetary-scale waves and the localized synoptic-scale eddies upstream. With the help of the perturbed inverse scattering transform method, nonlinear parameter equations can be derived to describe the evolution of the dipole soliton amplitude, frequency, group velocity and phase under the forcing of localized synoptic-scale eddies. The numerical solutions of these equations predict that in the interaction between the weak dipole soliton (weak incipient dipole anomaly) and the synoptic-scale eddies, only when the high-frequency eddies themselves have a moderate parameter match they can near resonantly enhance a quasi-stationary large-amplitude split flow. The instantaneous total streamfunction field (the sum of background westerly wind, envelope Rossby soliton and synoptic-scale waves) is found to be very similar to the observed Berggren-type blocking on the weather map(Berggren et al. 1949). The role of synoptic-scale eddies is to increase the amplitude of large-scale dipole anomaly flow, and to decrease its group velocity, phase velocity and zonal wavenumber so that the dipole anomaly system can be amplified and transferred from dispersive system to very weak dispersive one. This may explain why and how the synoptic-scale eddies can reinforce and maintain vortex pair block. Furthermore, it is clearly found that during the prevalence of the vortex pair block the synoptic-scale eddies are split into two branches around the vortex pair block due to the feedback of amplified dipole block. Key words Envelope Rossby solilon - Blocking - Synoptic-to-planetary scale interaction This research was supported jointly by the Foundation for University Key Teacher by the Ministry of Education and by the National Natural Science Foundation of China (49775266, 49905007)), the Knowledge Innovation Key Project of Chinese Academy of Sciences in the Resource Environment Field (Grant No. KZCX 2-203) and the National Key Foundation Research Project (G1998040900, Part I).展开更多
Initial mesoscale vortex effects on the tropical cyclone (TC) motion in a system where three components coexist (i.e., an environmental vortex (EV), a TC, and mesoscale vortices) were examined using a barotropic...Initial mesoscale vortex effects on the tropical cyclone (TC) motion in a system where three components coexist (i.e., an environmental vortex (EV), a TC, and mesoscale vortices) were examined using a barotropic vorticity equation model with initial fields where mesoscale vortices were generated stochastically. Results of these simulations indicate that the deflection of the TC track derived from the initial mesoscale vortices was clearly smaller than that from the beta effect in 60% of the cases. However, they may have a more significant impact on the TC track under the following circumstances. First, the interaction between an adjacent mesoscale vortex and the TC causes the emergence of a complicated structure with two centers in the TC inner region. This configuration may last for 8 h, and the two centers undergo a cyclonic rotation to make the change in direction of the TC motion. Second, two mesoscale vortices located in the EV circulation may merge, and the merged vortex shifts into the EV inner region, intensifying both the EV and steering flow for the TC, increasing speed of the TC.展开更多
The present study investigates the interannual variation of June-November synoptic disturbance activity over the western North Pacific(WNP) and its relationship with large-scale circulation for the period 1958-2014....The present study investigates the interannual variation of June-November synoptic disturbance activity over the western North Pacific(WNP) and its relationship with large-scale circulation for the period 1958-2014. Two leading modes of eddy kinetic energy for the disturbance variability over the WNP are obtained by EOF analysis, characterized by anomalous eddy kinetic energy over the subtropical WNP and around the Philippines, respectively. These modes explain a large portion of the interannual variance of synoptic disturbance activity over the WNP. Both are associated with lower-level cyclonic anomalies, but with different locations: over the subtropical WNP for the first mode and over the South China Sea for the second mode. Considering the impact of ENSO on synoptic disturbance activity over the WNP, we repeat the analyses after removing the effect of ENSO, which is simply defined as the components linearly regressed onto the Ni o3.4 index, and find similar results, suggesting that the leading modes and their relationships with large-scale circulation exist without SST effects.Further analyses suggest that the meridional shear of zonal winds caused by cyclonic anomalies is crucial for maintaining the leading modes through barotropic conversion.展开更多
In this paper, a new transient forced quasi-resonant triad interaction theory in a beta channel is proposed to investigate the interaction between planetary-scale diffluent flow composed of zonal wavenumbers 1-3 and s...In this paper, a new transient forced quasi-resonant triad interaction theory in a beta channel is proposed to investigate the interaction between planetary-scale diffluent flow composed of zonal wavenumbers 1-3 and synoptic-scale waves produced continuously by a synoptic-scale vorticity source fixed upstream of an incipient blocking region during the life cycle of blocking. It is shown that the superposition of initial three Rossby waves for zonal wavenumbers 1 (monopole), 2 (dipole), and 3 (monopole), which permit triad quasi-resonance, can represent an incipient blocking event. The synoptic-scale eddies may act to amplify the incipient blocking and to excite a blocking circulation with a strong meander, whose flow pattern depends on the initial amplitudes of the planetary waves and both the intensity and location of preexisting synoptic-scale waves. The onset (decay) of the planetary-scale split-flow blocking is mainly represented by a strong increase (decrease) in the amplitude of the zonal wavenumber 2 component, having a dipole meridional structure related to the preexisting synoptic-scale eddies. The typical persistence time of the model blocking was of about 20 days, consistent with observations of blocking patterns. In our model, isolated asymmetric dipole blocking is formed by synoptic-scale waves. The instantaneous fields of total streamfunctions exhibit a remarkable resemblance to the synoptic maps observed during the life cycle of blocking. During the onset stage, the synoptic-scale waves are enhanced and split into two branches around the blocking region due to the feedback of the amplified blocking, in agreement with the observed changes of synoptic-scale waves in real blocking events. In addition, a diagnostic case study of blocking is presented to confirm the forced quasi-resonant triad interaction theory proposed here.展开更多
This research work involves a comparative study of satellite rainfall and synoptic observations in the Republic of Guinea over a 30-year period.The methodology used consists,firstly,in assessing rainfall trends over t...This research work involves a comparative study of satellite rainfall and synoptic observations in the Republic of Guinea over a 30-year period.The methodology used consists,firstly,in assessing rainfall trends over the study period in Guinea’s four natural regions,using the temporal averages of the three stations located in each region.Secondly,we calculated the correlations between synoptic and satellite observation data,in order to determine the links between them on the basis of data analysis.The results for synoptic stations on average seasonal rainfall cycles and satellite products show that in Lower Guinea,the CRU(Climatic Research Unit)and GPCC(Global Precipitation Climatology Center)data are good estimates of observations.In the Fouta Djallon region,they also estimate observations well,but at two synoptic stations,with the exception of Mamou,they underestimate them.In Upper Guinea,during the monsoon period,satellites give a good estimate of rainfall in this area.In the forest region,these products show highly variable behavior,sometimes underestimating and sometimes overestimating observations,depending on the stations in the zone.展开更多
Upper-level jet streams over East Asia simulated by the LASG/IAP coupled climate system model FGOALS-s2 were assessed, and the mean state bias explained in terms of synoptic-scale transient eddy activ- ity (STEA). T...Upper-level jet streams over East Asia simulated by the LASG/IAP coupled climate system model FGOALS-s2 were assessed, and the mean state bias explained in terms of synoptic-scale transient eddy activ- ity (STEA). The results showed that the spatial distribution of the seasonal mean jet stream was reproduced well by the model, except that following a weaker meridional temperature gradient (MTG), the intensity of the jet stream was weaker than in National Centers for Environment Prediction (NCEP)/Department of Energy Atmospheric Model Inter-comparison Project II reanalysis data (NCEP2). Based on daily mean data, the jet core number was counted to identify the geographical border between the East Asian Sub- tropical Jet (EASJ) and the East Asian Polar-front Jet (EAPJ). The border is located over the Tibetan Plateau according to NCEP2 data, but was not evident in FGOALS-s2 simulations. The seasonal cycles of the jet streams were found to be reasonably reproduced, except that they shifted northward relative to reanalysis data in boreal summer owing to the northward shift of negative MTGs. To identify the reasons for mean state bias, the dynamical and thermal forcings of STEA on mean flow were examined with a focus on boreal winter. The dynamical and thermal forcings were estimated by extended Eliassen-Palm flux (E) and transient heat flux, respectively. The results showed that the failure to reproduce the tripolar-pattern of the divergence of E over the jet regions led to an unsuccessful separation of the EASJ and EAPJ, while dynamical forcing contributed less to the weaker EASJ. In contrast, the weaker transient heat flux partly explained the weaker EASJ over the ocean.展开更多
Using surface and aerological meteorological observations obtained at the Xisha Automatic Weather Station and three moored buoys along the continental slope, characteristics of the synoptic-scale disturbances over the...Using surface and aerological meteorological observations obtained at the Xisha Automatic Weather Station and three moored buoys along the continental slope, characteristics of the synoptic-scale disturbances over the northern South China Sea (NSCS) are extensively studied. The power spectra of surface and aerological observations suggest a synoptic feature with a pronounced energy peak at a period of 5–8 d and a weak peak at 3–4 d. The standard deviation of the synoptic temperature component derived at Xisha Station from 1976 to 2011 indicates that the strongest variability normally exists in August all through the whole troposphere. At the interannual scale, it is found that El Nin o plays an important role in regulating the synoptic disturbances of atmosphere. The vertical synoptic disturbances have a double active peak following El Nin o condition. The first peak usually occurs during the mature phase of El Nin o, and the second one occurs in the summer of decay year. Comparing with the summer of developing years, the summer of the decaying year of El Nin o has more active and stronger synoptic disturbances, especially for the 5–8 d period variations.展开更多
The Atlantic inflow in the Fram Strait(78°50′N) has synoptic scale variability based on an array of moorings over the period of 1998–2010. The synoptic scale variability of Atlantic inflow, whose significant ...The Atlantic inflow in the Fram Strait(78°50′N) has synoptic scale variability based on an array of moorings over the period of 1998–2010. The synoptic scale variability of Atlantic inflow, whose significant cycle is 3–16 d, occurs mainly in winter and spring(from January to April) and is related with polar lows in the Barents Sea. On the synoptic scale, the enhancement(weakening) of Atlantic inflow in the Fram Strait is accompanied by less(more)polar lows in the Barents Sea. Wind stress curl induced by polar lows in the Barents Sea causes Ekman-transport,leads to decrease of sea surface height in the Barents Sea, due to geostrophic adjustment, further induces a cyclonic circulation anomaly around the Barents Sea, and causes the weakening of the Atlantic inflow in the Fram Strait. Our results highlight the importance of polar lows in forcing the Atlantic inflow in the Fram Strait and can help us to further understand the effect of Atlantic warm water on the change of the Arctic Ocean.展开更多
In order to investigate the conversion of kinetic energy from a synoptic scale disturbance (SSD; period≤seven days) to a low-frequency fluctuation (LFF; period〉seven days), the budget equation of the LFF kinetic...In order to investigate the conversion of kinetic energy from a synoptic scale disturbance (SSD; period≤seven days) to a low-frequency fluctuation (LFF; period〉seven days), the budget equation of the LFF kinetic energy is derived. The energy conversion is then calculated and analyzed for the summers of 1997 and 1999. The results show that the energy conversion from the SSD to the LFF is obviously enhanced in the middle and lower troposphere during the heavy rainfall, suggesting this to be one of mechanisms inducing the heavy rainfall, although the local LFF kinetic energy may not be enhanced.展开更多
A set of new parameterizations for the friction velocity and temperature scale over gently sloped terrain and in calm synoptic conditions are theoretically derived. The friction velocity is found to be proportional to...A set of new parameterizations for the friction velocity and temperature scale over gently sloped terrain and in calm synoptic conditions are theoretically derived. The friction velocity is found to be proportional to the product of the square root of the total accumulated heating in the boundary layer and the sinusoidal function of the slope angle, while the temperature scale is proportional to the product of the boundary layer depth, the sinusoidal function of the slope angle and the potential temperature gradient in the free atmosphere. Using the new friction velocity parameterization, together with a parameterization of eddy diffusivity and an initial potential temperature profile around sunrise, an improved parameterization for the thermally induced upslope flow profile is derived by solving the Prandtl equations. The upslope flow profile is found to be simply proportional to the friction velocity.展开更多
It has long been known that incipient tropical cyclones(TCs) always occur in synoptic-scale disturbances or tropical cyclogenesis precursors, and the disturbances can intensify only within a limited area during tropic...It has long been known that incipient tropical cyclones(TCs) always occur in synoptic-scale disturbances or tropical cyclogenesis precursors, and the disturbances can intensify only within a limited area during tropical cyclogenesis. An observational analysis of five tropical cyclogenesis events over the western North Pacific during 11 August to 10 September 2004 is conducted to demonstrate the role of synoptic-scale disturbances in establishing a limited area of low-deformation vorticity for tropical cyclogenesis.The analysis of the five tropical cyclogenesis events shows that synoptic-scale tropical cyclogenesis precursors provide a region of low-deformation vorticity, which is measured with large positive values of the Okubo-Weiss(OW) parameter.The OW concentrated areas are within the tropical cyclogenesis precursors with a radius of about 400-500 km and can be found as early as 72 hours prior to the formation of the tropical depression. When the TCs reached the tropical storm intensity, the concentrated OW is confined to an area of 200-300 radius and the storm centers are coincident with the centers of the maximum OW. This study indicates that the tropical cyclogenesis occurs in the low-deformation 18-72 hours prior to the formation of tropical depressions, suggesting the importance of low-deformation vorticity in pre-existent synoptic-scale disturbances. Although the Rossby radius of deformation is reduced in TC genesis precedes,the reduction does not sufficiently make effective conversion of convective heating into kinetic energy within the low-deformation area. Further analysis indicates that the initial development of four of the five disturbances is coupled with the counterclockwise circulation of the mixed Rossby-Gravity(MRG) wave.展开更多
In order to evaluate the precipitation forecast performance of mesoscale numerical model in Northeast China,mesoscale model in Liaoning Province and T213 model,and improve the ability to use their forecast products fo...In order to evaluate the precipitation forecast performance of mesoscale numerical model in Northeast China,mesoscale model in Liaoning Province and T213 model,and improve the ability to use their forecast products for forecasters,the synoptic verifications of their 12 h accumulated precipitation forecasts of 3 numerical modes from May to August in 2008 were made on the basis of different systems impacting weather in Liaoning Province.The time limitations were 24,36,48 and 60 h.The verified contents included 6 aspects such as intensity and position of precipitation center,intensity,location,scope and moving velocity of precipitation main body.The results showed that the three models had good forecasting capability for precipitation in Liaoning Province,but the cupacity of each model was obviously different.展开更多
In this study,power spectral analysis and bandpass filtering of daily meteorological fields are performed to explore the roles of synoptic to quasi-monthly disturbances in influencing the generation of pre-summer heav...In this study,power spectral analysis and bandpass filtering of daily meteorological fields are performed to explore the roles of synoptic to quasi-monthly disturbances in influencing the generation of pre-summer heavy rainfall over South China.Two heavy rainfall episodes are selected during the months of April-June 2008-15,which represent the collaboration between the synoptic and quasi-biweekly disturbances and the synoptic and quasi-monthly disturbances,respectively.Results show that the first heavy rainfall episode takes place in a southwesterly anomalous flow associated with an anticyclonic anomaly over the South China Sea(SCS)at the quasi-biweekly scale with 15.1%variance contributions,and at the synoptic scale in a convergence zone between southwesterly and northeasterly anomalous flows associated with a southeastward-moving anticyclonic anomaly on the leeside of the Yungui Plateau and an eastwardpropagating anticyclonic anomaly from higher latitudes with 35.2%variance contribution.In contrast,the second heavy rainfall episode takes place in southwest-to-westerly anomalies converging with northwest-to-westerly anomalies at the quasi-monthly scale with 23.2%variance contributions to the total rainfall variance,which are associated with an anticyclonic anomaly over the SCS and an eastward-propagating cyclonic anomaly over North China,respectively.At the synoptic scale,it occurs in south-to-southwesterly anomalies converging with a cyclonic anomaly on the downstream of the Yungui Plateau with 49.3%variance contributions.In both cases,the lower-tropospheric mean south-to-southwesterly flows provide ample moisture supply and potentially unstable conditions;it is the above synoptic,quasi-biweekly or quasimonthly disturbances that determine the general period and distribution of persistent heavy rainfall over South China.展开更多
Fogs observed over Incheon international airport (IIA) in the west coast of Korea from January 2002 to August 2006 are classified into categories of coastal fog, cold sea fog, and warm sea fog based on the areal ext...Fogs observed over Incheon international airport (IIA) in the west coast of Korea from January 2002 to August 2006 are classified into categories of coastal fog, cold sea fog, and warm sea fog based on the areal extent of the fogs and the difference between the air temperature (T ) and the SST, i.e., cold sea fog if TSST = T -SST 〉 0~0C and warm sea fog if TSST 〈 0~0C. The numbers of coastal, cold, and warm sea fog cases are 64, 26, and 9. Coastal fogs form most frequently in winter, while cold sea fogs occur mostly in summer and warm sea fogs are observed from January to May but not in November and December. On average the air gets colder by 1.6~0C during the three hours leading up to the coastal fog formation, and an additional cooling of 1.1~0C occurs during the fog. The change in the dew point temperature (T_d) is minimal except during the fog (0.6~0C). Decreases in T for the cold and warm sea fogs are relatively smaller. The average Td is higher than SST during the cold sea fog periods but this T_d is more than 4~0C higher than that for the corresponding non-fog days, suggesting that cold sea fogs be formed by the cooling of already humid air (i.e., T_d〉SST). Increases of T_d are significant during the warm sea fog periods (1.4~0C), implying that effcient moisture supply is essential to warm sea fog formation. Four major synoptic patterns are identified in association with the observed fogs. The most frequent is a north Pacific high that accounts for 38% of cases. Surface or upper inversions are present in 77%, 69%, and 81% of the fog periods for coastal, cold, and warm sea fogs, respectively.展开更多
Synoptic patterns identified by an automated procedure employing principal- component analysis and a two-stage cluster analysis, and backward trajectory analysis clustered by the HYSPLIT4.9 model were used to examine ...Synoptic patterns identified by an automated procedure employing principal- component analysis and a two-stage cluster analysis, and backward trajectory analysis clustered by the HYSPLIT4.9 model were used to examine air quality patterns over¨ Uru¨mqi, China, one of the most heavily polluted cities in the world. Six synoptic patterns representing different atmospheric circulation patterns and air-mass characteristics were classified during the winter heating periods from 2001 to 2008, and seven trajectory clusters representing different paths of air masses arriving at ürümqi were calculated during the winter heating periods from 2005 to 2008. Then air quality was evaluated using these two approaches, and significant variations were found across both synoptic patterns and trajectory clusters. The heaviest air-pollution episodes occurred when ürümqi was either in an extremely cold, strong anticyclone or at the front of a migrating cyclone. Both conditions were characterized by with light winds, cold, wet surface air, and relatively dry upper air. ürümqi was predominately influenced by air masses from the southwest and from local areas. Air pollution index (API) levels were highest for air masses originating from the southwest with a longer path or for the local area, because of transport from semi-desert/desert regions by strong winds and because of local heavy pollution emissions, respectively. The interactions between these two analytical approaches showed that poor diffusion conditions, together with local circulation, enhanced air pollution, besides, regional air-mass transport caused by strong winds contributed to serious air quality under relatively good diffusion conditions.展开更多
The fog occurs frequently over the Yellow Sea in spring(April–May), a climatical period of Asian monsoon transition. A comprehensive survey of the characteristic weather pattern and the air-sea condition is provide...The fog occurs frequently over the Yellow Sea in spring(April–May), a climatical period of Asian monsoon transition. A comprehensive survey of the characteristic weather pattern and the air-sea condition is provided associated with the fog for the period of 1960–2006. The sea fog is categorized by airflow pathways of backward trajectory cluster analysis with the surface observations derived from international comprehensive oceanatmosphere dataset(I_COADS) I_COADS datasets and contemporaneous wind fields from the National Centers for Environmental Prediction(NCEP)/National Center for Atmospheric Research(NCAR) reanalysis. On the basis of the airflow paths, the large-scale lower-tropospheric circulation patterns and the associated surface divergence,the distribution of a vertical humidity, the horizontal water vapor transportation and the air-sea temperature difference are investigated and the major findings are summarized as follows.(1) Four primary clusters of the airflow paths that lead to spring sea fog formation are identified. They are originated from the northwest, east,southeast and southwest of the Yellow Sea, respectively.(2) Springtime Yellow Sea fog occurs under two typical weather patterns: the Yellow Sea high(YSH) and cyclone and anticyclone couplet(CAC). Each pattern appears by about equal chance in April but the YSH occurrence drops to around one third and the CAC rises to around two third of chance in May.(3) The common feature in the two types of synoptic conditions is that surface divergence center is located over the Yellow Sea.(4) For the YSH type of fog, water vapor comes mainly from local evaporation with a well-defined dry layer present in the lower atmosphere; for the CAC type of fog, however, water vapor comes mainly from areas outside the Yellow Sea with a thick surface layer of high humidity.(5) With the differences in weather patterns and its associated vertical distribution of the humidity and the transportation of water vapor, there are two types of sea fogs. Most fogs of the CAC types are "warm" fog, while fogs of YSH type have nearly equal chance to be "warm" and "cold" fog.展开更多
This study investigates the tropical cyclone(TC)activity associated with the two leading modes of interannual variability in synoptic disturbances.Both leading modes are found to be related to a dipole pattern of TC o...This study investigates the tropical cyclone(TC)activity associated with the two leading modes of interannual variability in synoptic disturbances.Both leading modes are found to be related to a dipole pattern of TC occurrence between the subtropical western North Pacific and the South China Sea.Therefore,in this study we performed composite analyses on TC tracks and landfalls,based on the cases of combined modes,to highlight the differences.The composite results indicate that these cases are characterized by distinct features of TC tracks and landfalls:more TCs tend to take recurving tracks and attack eastern China,Korea and Japan,or more TCs exhibit straight-moving tracks and hit the Philippines,Vietnam and southern China.Further analyses suggest that these distinctions in the TC prevailing tracks and landfalls can be attributed to the differences in large-scale steering flow and TC genesis location.展开更多
基金Acknowledgments. This research was supported by the TRAPOYT and by the National Natural Science Foun-dation of China under Grant No. 40023001.
文摘An observational study is presented to confirm that the life cycle of blocking associated with synoptic—scale eddies is a transfer process between dispersion and nondispersion. In addition, numerical experiments are conducted. It is found that the synoptic—scale eddies seem to play a dominant role in the amplification of blocking, while the topography effect appears to play a phase-locking role. At the same time, the synoptic eddies tend to split into two branches during the onset of blocking. This supports the observational results obtained.
基金sponsored by the U.S. Department of Energy (DOE)supported by the Ministry of Science and Technology of China (Grant Nos. 2010CB950804 and 2013CB955801)+1 种基金the "Strategic Priority Research Program" of the Chinese Academy of Sciences (Grant No. XDA05100300)the National Natural Science Foundation of China (Grant No. 41305011)
文摘Knowledge of the statistical characteristics of inversions and their effects on aerosols under different large-scale synoptic circulations is important for studying and modeling the diffusion of pollutants in the boundary layer. Based on results gen- erated using the self-organizing map (SOM) weather classification method, this study compares the statistical characteristics of surface-based inversions (SBIs) and elevated inversions (EIs), and quantitatively evaluates the effect of SBIs on aerosol condensation nuclei (CN) concentrations and the relationship between temperature gradients and aerosols for six prevailing synoptic patterns over the the Southern Great Plains (SGP) site during 2001-10. Large-scale synoptic patterns strongly influ- ence the statistical characteristics of inversions and the accumulation of aerosols in the low-level atmosphere. The activity, frequency, intensity, and vertical distribution of inversions are significantly different among these synoptic patterns. The verti- cal distribution of inversions varies diurnally and is significantly different among the different synoptic patterns. Anticyclonic patterns affect the accumulation of aerosols near the ground more strongly than cyclonic patterns. Mean aerosol CN con- centrations increase during SBIs compared to no inversion cases by 16.1%, 22.6%, 24.5%, 58.7%, 29.8% and 23.7% for the six synoptic patterns. This study confirms that there is a positive correlation between temperature gradients and aerosol CN concentrations near the ground at night under similar large-scale synoptic patterns. The relationship is different for different synoptic patterns and can be described by linear functions. These findings suggest that large-scale synoptic patterns change the static stability of the atmosphere and inversions in the lower atmosphere, thereby influencing the diffusion of aerosols near the ground.
基金This research was supported jointly by the Foundation for University Key Teacher by the Ministry ofEducation and by the Nation
文摘In this paper, in an equivalent barotropic framework a new forced nonlinear Schroedinger equation is proposed to examine the interaction between the planetary-scale waves and the localized synoptic-scale eddies upstream. With the help of the perturbed inverse scattering transform method, nonlinear parameter equations can be derived to describe the evolution of the dipole soliton amplitude, frequency, group velocity and phase under the forcing of localized synoptic-scale eddies. The numerical solutions of these equations predict that in the interaction between the weak dipole soliton (weak incipient dipole anomaly) and the synoptic-scale eddies, only when the high-frequency eddies themselves have a moderate parameter match they can near resonantly enhance a quasi-stationary large-amplitude split flow. The instantaneous total streamfunction field (the sum of background westerly wind, envelope Rossby soliton and synoptic-scale waves) is found to be very similar to the observed Berggren-type blocking on the weather map(Berggren et al. 1949). The role of synoptic-scale eddies is to increase the amplitude of large-scale dipole anomaly flow, and to decrease its group velocity, phase velocity and zonal wavenumber so that the dipole anomaly system can be amplified and transferred from dispersive system to very weak dispersive one. This may explain why and how the synoptic-scale eddies can reinforce and maintain vortex pair block. Furthermore, it is clearly found that during the prevalence of the vortex pair block the synoptic-scale eddies are split into two branches around the vortex pair block due to the feedback of amplified dipole block. Key words Envelope Rossby solilon - Blocking - Synoptic-to-planetary scale interaction This research was supported jointly by the Foundation for University Key Teacher by the Ministry of Education and by the National Natural Science Foundation of China (49775266, 49905007)), the Knowledge Innovation Key Project of Chinese Academy of Sciences in the Resource Environment Field (Grant No. KZCX 2-203) and the National Key Foundation Research Project (G1998040900, Part I).
基金supported by the National Natural Science Foundation of China (Grant Nos. 40775038,40875031 and 40975036)
文摘Initial mesoscale vortex effects on the tropical cyclone (TC) motion in a system where three components coexist (i.e., an environmental vortex (EV), a TC, and mesoscale vortices) were examined using a barotropic vorticity equation model with initial fields where mesoscale vortices were generated stochastically. Results of these simulations indicate that the deflection of the TC track derived from the initial mesoscale vortices was clearly smaller than that from the beta effect in 60% of the cases. However, they may have a more significant impact on the TC track under the following circumstances. First, the interaction between an adjacent mesoscale vortex and the TC causes the emergence of a complicated structure with two centers in the TC inner region. This configuration may last for 8 h, and the two centers undergo a cyclonic rotation to make the change in direction of the TC motion. Second, two mesoscale vortices located in the EV circulation may merge, and the merged vortex shifts into the EV inner region, intensifying both the EV and steering flow for the TC, increasing speed of the TC.
基金supported by the National Natural Science Foundation of China (Grant Nos.41320104007,41475074 and 41475077)
文摘The present study investigates the interannual variation of June-November synoptic disturbance activity over the western North Pacific(WNP) and its relationship with large-scale circulation for the period 1958-2014. Two leading modes of eddy kinetic energy for the disturbance variability over the WNP are obtained by EOF analysis, characterized by anomalous eddy kinetic energy over the subtropical WNP and around the Philippines, respectively. These modes explain a large portion of the interannual variance of synoptic disturbance activity over the WNP. Both are associated with lower-level cyclonic anomalies, but with different locations: over the subtropical WNP for the first mode and over the South China Sea for the second mode. Considering the impact of ENSO on synoptic disturbance activity over the WNP, we repeat the analyses after removing the effect of ENSO, which is simply defined as the components linearly regressed onto the Ni o3.4 index, and find similar results, suggesting that the leading modes and their relationships with large-scale circulation exist without SST effects.Further analyses suggest that the meridional shear of zonal winds caused by cyclonic anomalies is crucial for maintaining the leading modes through barotropic conversion.
基金supported in part by the National Natural Science Fundation of China(Grant No. 4057016)and Taishan Scholar funding
文摘In this paper, a new transient forced quasi-resonant triad interaction theory in a beta channel is proposed to investigate the interaction between planetary-scale diffluent flow composed of zonal wavenumbers 1-3 and synoptic-scale waves produced continuously by a synoptic-scale vorticity source fixed upstream of an incipient blocking region during the life cycle of blocking. It is shown that the superposition of initial three Rossby waves for zonal wavenumbers 1 (monopole), 2 (dipole), and 3 (monopole), which permit triad quasi-resonance, can represent an incipient blocking event. The synoptic-scale eddies may act to amplify the incipient blocking and to excite a blocking circulation with a strong meander, whose flow pattern depends on the initial amplitudes of the planetary waves and both the intensity and location of preexisting synoptic-scale waves. The onset (decay) of the planetary-scale split-flow blocking is mainly represented by a strong increase (decrease) in the amplitude of the zonal wavenumber 2 component, having a dipole meridional structure related to the preexisting synoptic-scale eddies. The typical persistence time of the model blocking was of about 20 days, consistent with observations of blocking patterns. In our model, isolated asymmetric dipole blocking is formed by synoptic-scale waves. The instantaneous fields of total streamfunctions exhibit a remarkable resemblance to the synoptic maps observed during the life cycle of blocking. During the onset stage, the synoptic-scale waves are enhanced and split into two branches around the blocking region due to the feedback of the amplified blocking, in agreement with the observed changes of synoptic-scale waves in real blocking events. In addition, a diagnostic case study of blocking is presented to confirm the forced quasi-resonant triad interaction theory proposed here.
文摘This research work involves a comparative study of satellite rainfall and synoptic observations in the Republic of Guinea over a 30-year period.The methodology used consists,firstly,in assessing rainfall trends over the study period in Guinea’s four natural regions,using the temporal averages of the three stations located in each region.Secondly,we calculated the correlations between synoptic and satellite observation data,in order to determine the links between them on the basis of data analysis.The results for synoptic stations on average seasonal rainfall cycles and satellite products show that in Lower Guinea,the CRU(Climatic Research Unit)and GPCC(Global Precipitation Climatology Center)data are good estimates of observations.In the Fouta Djallon region,they also estimate observations well,but at two synoptic stations,with the exception of Mamou,they underestimate them.In Upper Guinea,during the monsoon period,satellites give a good estimate of rainfall in this area.In the forest region,these products show highly variable behavior,sometimes underestimating and sometimes overestimating observations,depending on the stations in the zone.
基金supported by the National High Technology Research and Development Program of China(Grant No.2010AA012304)the National Program on Key Basic Research Project of China(Grant No.2010CB951904)+1 种基金the National Natural Science Foundation of China project(Grant No.41125017)the"Strategic Priority Research Program-Climate Change:Carbon Budget and RelatedIssues"of the Chinese Academy of Sciences(Grant No.XDA05110301)
文摘Upper-level jet streams over East Asia simulated by the LASG/IAP coupled climate system model FGOALS-s2 were assessed, and the mean state bias explained in terms of synoptic-scale transient eddy activ- ity (STEA). The results showed that the spatial distribution of the seasonal mean jet stream was reproduced well by the model, except that following a weaker meridional temperature gradient (MTG), the intensity of the jet stream was weaker than in National Centers for Environment Prediction (NCEP)/Department of Energy Atmospheric Model Inter-comparison Project II reanalysis data (NCEP2). Based on daily mean data, the jet core number was counted to identify the geographical border between the East Asian Sub- tropical Jet (EASJ) and the East Asian Polar-front Jet (EAPJ). The border is located over the Tibetan Plateau according to NCEP2 data, but was not evident in FGOALS-s2 simulations. The seasonal cycles of the jet streams were found to be reasonably reproduced, except that they shifted northward relative to reanalysis data in boreal summer owing to the northward shift of negative MTGs. To identify the reasons for mean state bias, the dynamical and thermal forcings of STEA on mean flow were examined with a focus on boreal winter. The dynamical and thermal forcings were estimated by extended Eliassen-Palm flux (E) and transient heat flux, respectively. The results showed that the failure to reproduce the tripolar-pattern of the divergence of E over the jet regions led to an unsuccessful separation of the EASJ and EAPJ, while dynamical forcing contributed less to the weaker EASJ. In contrast, the weaker transient heat flux partly explained the weaker EASJ over the ocean.
基金The aerological data of Xisha Station were downloaded from http://weather.uwyo.edu/upperair/sounding.html.by The National Natural Basic Research Program ("973" Program) of China, under contract No. 2011CB403501the Knowledge Innovation Project for Distinguished Young Scholar of the Chinese Academy of Sciences of China under contract No. KZCX2-EW-QN203+1 种基金the Knowledge Innovation Program of the Chinese Academy of Sciences of China under contract No. SQ200916the National Natural Science Foundation of China under contract Nos 41206011 and 41106028
文摘Using surface and aerological meteorological observations obtained at the Xisha Automatic Weather Station and three moored buoys along the continental slope, characteristics of the synoptic-scale disturbances over the northern South China Sea (NSCS) are extensively studied. The power spectra of surface and aerological observations suggest a synoptic feature with a pronounced energy peak at a period of 5–8 d and a weak peak at 3–4 d. The standard deviation of the synoptic temperature component derived at Xisha Station from 1976 to 2011 indicates that the strongest variability normally exists in August all through the whole troposphere. At the interannual scale, it is found that El Nin o plays an important role in regulating the synoptic disturbances of atmosphere. The vertical synoptic disturbances have a double active peak following El Nin o condition. The first peak usually occurs during the mature phase of El Nin o, and the second one occurs in the summer of decay year. Comparing with the summer of developing years, the summer of the decaying year of El Nin o has more active and stronger synoptic disturbances, especially for the 5–8 d period variations.
基金The Global Change Research Program of China under contract No.2015CB953900the General Program of National Natural Science Foundation of China under contract No.41276197+2 种基金the Natural Science Foundation of Zhejiang Province under contract Nos LY18D060004 and LQ18D060001the Foundation of Zhejiang Education Department under contract No.1260KZ0417982the Talent Start Foundation of Zhejiang Gongshang University under contract Nos 1260XJ2317015 and1260XJ2117015
文摘The Atlantic inflow in the Fram Strait(78°50′N) has synoptic scale variability based on an array of moorings over the period of 1998–2010. The synoptic scale variability of Atlantic inflow, whose significant cycle is 3–16 d, occurs mainly in winter and spring(from January to April) and is related with polar lows in the Barents Sea. On the synoptic scale, the enhancement(weakening) of Atlantic inflow in the Fram Strait is accompanied by less(more)polar lows in the Barents Sea. Wind stress curl induced by polar lows in the Barents Sea causes Ekman-transport,leads to decrease of sea surface height in the Barents Sea, due to geostrophic adjustment, further induces a cyclonic circulation anomaly around the Barents Sea, and causes the weakening of the Atlantic inflow in the Fram Strait. Our results highlight the importance of polar lows in forcing the Atlantic inflow in the Fram Strait and can help us to further understand the effect of Atlantic warm water on the change of the Arctic Ocean.
文摘In order to investigate the conversion of kinetic energy from a synoptic scale disturbance (SSD; period≤seven days) to a low-frequency fluctuation (LFF; period〉seven days), the budget equation of the LFF kinetic energy is derived. The energy conversion is then calculated and analyzed for the summers of 1997 and 1999. The results show that the energy conversion from the SSD to the LFF is obviously enhanced in the middle and lower troposphere during the heavy rainfall, suggesting this to be one of mechanisms inducing the heavy rainfall, although the local LFF kinetic energy may not be enhanced.
基金supported by the National Natural Science Foundation of China(Grant No. 40233032)Ministry of Science and Tech-nology (Grant No. 2006BAB18B03 and Grant No.2006BAB18B05)Office of Naval Research (Grant No.N0001409WR20177)
文摘A set of new parameterizations for the friction velocity and temperature scale over gently sloped terrain and in calm synoptic conditions are theoretically derived. The friction velocity is found to be proportional to the product of the square root of the total accumulated heating in the boundary layer and the sinusoidal function of the slope angle, while the temperature scale is proportional to the product of the boundary layer depth, the sinusoidal function of the slope angle and the potential temperature gradient in the free atmosphere. Using the new friction velocity parameterization, together with a parameterization of eddy diffusivity and an initial potential temperature profile around sunrise, an improved parameterization for the thermally induced upslope flow profile is derived by solving the Prandtl equations. The upslope flow profile is found to be simply proportional to the friction velocity.
基金supported by the National Natural Science Foundation of China[grant numbers 41991280 and 42025502]the Guangdong Major Project of Basic and Applied Basic Research[grant number 2020B0301030004]the State Scholarship Fund by China Scholarship Council[grant number 202109045003].
基金National Natural Science Foundation of Ningbo(2016A610208)National Basic Research Program of China(2013CB430103,2015CB452803)+1 种基金National Natural Science Foundation of China(41275093)project of the specially-appointed professorship of Jiangsu Province
文摘It has long been known that incipient tropical cyclones(TCs) always occur in synoptic-scale disturbances or tropical cyclogenesis precursors, and the disturbances can intensify only within a limited area during tropical cyclogenesis. An observational analysis of five tropical cyclogenesis events over the western North Pacific during 11 August to 10 September 2004 is conducted to demonstrate the role of synoptic-scale disturbances in establishing a limited area of low-deformation vorticity for tropical cyclogenesis.The analysis of the five tropical cyclogenesis events shows that synoptic-scale tropical cyclogenesis precursors provide a region of low-deformation vorticity, which is measured with large positive values of the Okubo-Weiss(OW) parameter.The OW concentrated areas are within the tropical cyclogenesis precursors with a radius of about 400-500 km and can be found as early as 72 hours prior to the formation of the tropical depression. When the TCs reached the tropical storm intensity, the concentrated OW is confined to an area of 200-300 radius and the storm centers are coincident with the centers of the maximum OW. This study indicates that the tropical cyclogenesis occurs in the low-deformation 18-72 hours prior to the formation of tropical depressions, suggesting the importance of low-deformation vorticity in pre-existent synoptic-scale disturbances. Although the Rossby radius of deformation is reduced in TC genesis precedes,the reduction does not sufficiently make effective conversion of convective heating into kinetic energy within the low-deformation area. Further analysis indicates that the initial development of four of the five disturbances is coupled with the counterclockwise circulation of the mixed Rossby-Gravity(MRG) wave.
文摘In order to evaluate the precipitation forecast performance of mesoscale numerical model in Northeast China,mesoscale model in Liaoning Province and T213 model,and improve the ability to use their forecast products for forecasters,the synoptic verifications of their 12 h accumulated precipitation forecasts of 3 numerical modes from May to August in 2008 were made on the basis of different systems impacting weather in Liaoning Province.The time limitations were 24,36,48 and 60 h.The verified contents included 6 aspects such as intensity and position of precipitation center,intensity,location,scope and moving velocity of precipitation main body.The results showed that the three models had good forecasting capability for precipitation in Liaoning Province,but the cupacity of each model was obviously different.
基金supported by Special project for Key Technology Development of Meteorological Forecast Operation [Grant No. YBGJXM (2019) 04-03]the National Key R&D Program of China (Grant No. 2018YFC1507403)+1 种基金the National Natural Science Foundation of China (Grant No. 41475043)the National Basic Research (973) Program of China (Grant Nos. 2014CB441402 and 2015CB954102)
文摘In this study,power spectral analysis and bandpass filtering of daily meteorological fields are performed to explore the roles of synoptic to quasi-monthly disturbances in influencing the generation of pre-summer heavy rainfall over South China.Two heavy rainfall episodes are selected during the months of April-June 2008-15,which represent the collaboration between the synoptic and quasi-biweekly disturbances and the synoptic and quasi-monthly disturbances,respectively.Results show that the first heavy rainfall episode takes place in a southwesterly anomalous flow associated with an anticyclonic anomaly over the South China Sea(SCS)at the quasi-biweekly scale with 15.1%variance contributions,and at the synoptic scale in a convergence zone between southwesterly and northeasterly anomalous flows associated with a southeastward-moving anticyclonic anomaly on the leeside of the Yungui Plateau and an eastwardpropagating anticyclonic anomaly from higher latitudes with 35.2%variance contribution.In contrast,the second heavy rainfall episode takes place in southwest-to-westerly anomalies converging with northwest-to-westerly anomalies at the quasi-monthly scale with 23.2%variance contributions to the total rainfall variance,which are associated with an anticyclonic anomaly over the SCS and an eastward-propagating cyclonic anomaly over North China,respectively.At the synoptic scale,it occurs in south-to-southwesterly anomalies converging with a cyclonic anomaly on the downstream of the Yungui Plateau with 49.3%variance contributions.In both cases,the lower-tropospheric mean south-to-southwesterly flows provide ample moisture supply and potentially unstable conditions;it is the above synoptic,quasi-biweekly or quasimonthly disturbances that determine the general period and distribution of persistent heavy rainfall over South China.
基金supported by Grant No. R01-2008-000-12073-0 from the Basic Research Program of Korea Science & Engineering Foundation
文摘Fogs observed over Incheon international airport (IIA) in the west coast of Korea from January 2002 to August 2006 are classified into categories of coastal fog, cold sea fog, and warm sea fog based on the areal extent of the fogs and the difference between the air temperature (T ) and the SST, i.e., cold sea fog if TSST = T -SST 〉 0~0C and warm sea fog if TSST 〈 0~0C. The numbers of coastal, cold, and warm sea fog cases are 64, 26, and 9. Coastal fogs form most frequently in winter, while cold sea fogs occur mostly in summer and warm sea fogs are observed from January to May but not in November and December. On average the air gets colder by 1.6~0C during the three hours leading up to the coastal fog formation, and an additional cooling of 1.1~0C occurs during the fog. The change in the dew point temperature (T_d) is minimal except during the fog (0.6~0C). Decreases in T for the cold and warm sea fogs are relatively smaller. The average Td is higher than SST during the cold sea fog periods but this T_d is more than 4~0C higher than that for the corresponding non-fog days, suggesting that cold sea fogs be formed by the cooling of already humid air (i.e., T_d〉SST). Increases of T_d are significant during the warm sea fog periods (1.4~0C), implying that effcient moisture supply is essential to warm sea fog formation. Four major synoptic patterns are identified in association with the observed fogs. The most frequent is a north Pacific high that accounts for 38% of cases. Surface or upper inversions are present in 77%, 69%, and 81% of the fog periods for coastal, cold, and warm sea fogs, respectively.
基金supported by the National Basic Research Program (also called 973 Program) of China (Grant No 2007CB407303)the Knowledge Innovation Program of the Chinese Academy of Sciences (Grant No KZCX2-YW-Q02-03)
文摘Synoptic patterns identified by an automated procedure employing principal- component analysis and a two-stage cluster analysis, and backward trajectory analysis clustered by the HYSPLIT4.9 model were used to examine air quality patterns over¨ Uru¨mqi, China, one of the most heavily polluted cities in the world. Six synoptic patterns representing different atmospheric circulation patterns and air-mass characteristics were classified during the winter heating periods from 2001 to 2008, and seven trajectory clusters representing different paths of air masses arriving at ürümqi were calculated during the winter heating periods from 2005 to 2008. Then air quality was evaluated using these two approaches, and significant variations were found across both synoptic patterns and trajectory clusters. The heaviest air-pollution episodes occurred when ürümqi was either in an extremely cold, strong anticyclone or at the front of a migrating cyclone. Both conditions were characterized by with light winds, cold, wet surface air, and relatively dry upper air. ürümqi was predominately influenced by air masses from the southwest and from local areas. Air pollution index (API) levels were highest for air masses originating from the southwest with a longer path or for the local area, because of transport from semi-desert/desert regions by strong winds and because of local heavy pollution emissions, respectively. The interactions between these two analytical approaches showed that poor diffusion conditions, together with local circulation, enhanced air pollution, besides, regional air-mass transport caused by strong winds contributed to serious air quality under relatively good diffusion conditions.
基金The National Natural Science Foundation of China under contract No.41275025the Special Fund for Strategic Pilot Technology of Chinese Academy of Sciences under contract No.XDA11010403the National Key Basic Research Program(973 Progrom)of China under controut No.2014CB953903
文摘The fog occurs frequently over the Yellow Sea in spring(April–May), a climatical period of Asian monsoon transition. A comprehensive survey of the characteristic weather pattern and the air-sea condition is provided associated with the fog for the period of 1960–2006. The sea fog is categorized by airflow pathways of backward trajectory cluster analysis with the surface observations derived from international comprehensive oceanatmosphere dataset(I_COADS) I_COADS datasets and contemporaneous wind fields from the National Centers for Environmental Prediction(NCEP)/National Center for Atmospheric Research(NCAR) reanalysis. On the basis of the airflow paths, the large-scale lower-tropospheric circulation patterns and the associated surface divergence,the distribution of a vertical humidity, the horizontal water vapor transportation and the air-sea temperature difference are investigated and the major findings are summarized as follows.(1) Four primary clusters of the airflow paths that lead to spring sea fog formation are identified. They are originated from the northwest, east,southeast and southwest of the Yellow Sea, respectively.(2) Springtime Yellow Sea fog occurs under two typical weather patterns: the Yellow Sea high(YSH) and cyclone and anticyclone couplet(CAC). Each pattern appears by about equal chance in April but the YSH occurrence drops to around one third and the CAC rises to around two third of chance in May.(3) The common feature in the two types of synoptic conditions is that surface divergence center is located over the Yellow Sea.(4) For the YSH type of fog, water vapor comes mainly from local evaporation with a well-defined dry layer present in the lower atmosphere; for the CAC type of fog, however, water vapor comes mainly from areas outside the Yellow Sea with a thick surface layer of high humidity.(5) With the differences in weather patterns and its associated vertical distribution of the humidity and the transportation of water vapor, there are two types of sea fogs. Most fogs of the CAC types are "warm" fog, while fogs of YSH type have nearly equal chance to be "warm" and "cold" fog.
基金supported by the National Natural Science Foundation of China (Grant Nos.41721004,41475074 and 41775063)
文摘This study investigates the tropical cyclone(TC)activity associated with the two leading modes of interannual variability in synoptic disturbances.Both leading modes are found to be related to a dipole pattern of TC occurrence between the subtropical western North Pacific and the South China Sea.Therefore,in this study we performed composite analyses on TC tracks and landfalls,based on the cases of combined modes,to highlight the differences.The composite results indicate that these cases are characterized by distinct features of TC tracks and landfalls:more TCs tend to take recurving tracks and attack eastern China,Korea and Japan,or more TCs exhibit straight-moving tracks and hit the Philippines,Vietnam and southern China.Further analyses suggest that these distinctions in the TC prevailing tracks and landfalls can be attributed to the differences in large-scale steering flow and TC genesis location.