Cyperus difformis L.is a troublesome weed in paddy fields and has attracted attention due to its resistance to acetohydroxyacid synthase(AHAS)inhibitors.It was found that the amino acid mutation in AHAS was the primar...Cyperus difformis L.is a troublesome weed in paddy fields and has attracted attention due to its resistance to acetohydroxyacid synthase(AHAS)inhibitors.It was found that the amino acid mutation in AHAS was the primary cause for the resistance of Cyperus difformis.However,the effect of different mutations on AHAS function is not clear in Cyperus difformis.To confirm the effect of mutations on AHAS function,six biotypes were collected,including Pro197Arg,Pro197Ser,Pro197Leu,Asp376Glu,Trp574Leu and wild type,from Hunan,Anhui,Jiangxi and Jiangsu provinces,China and the function of AHAS was characterized.The AHAS in vitro inhibition assay results indicated that the mutations decreased the sensitivity of AHAS to pyrazosulfuron-ethyl,in which the I_(50)(the half maximal inhibitory concentration)of wild type AHAS was 0.04μmol L^(-1)and Asp376Glu,Pro197Leu,Pro197Arg,Pro197Ser and Trp574Leu mutations were 3.98,11.50,40.38,38.19 and 311.43μmol L^(-1),respectively.In the determination of enzyme kinetics parameters,the Km and the maximum reaction velocity(Vmax)of the wild type were 5.18 mmol L^(-1)and 0.12 nmol mg^(-1)min^(-1),respectively,and the Km values of AHAS with Asp376Glu,Trp574Leu,Pro197Leu and Pro197Ser mutations were 0.38-0.93 times of the wild type.The Km value of the Pro197Arg mutation was 1.14times of the wild type,and the Vmax values of the five mutations were 1.17-3.33-fold compared to the wild type.It was found that the mutations increased the affinity of AHAS to the substrate,except for the Pro197Arg mutation.At a concentration of 0.0032-100 mmol L^(-1)branched-chain amino acids(BCAAs),the sensitivity of the other four mutant AHAS biotypes to feedback inhibition decreased,except for the Pro197Arg mutation.This study elucidated the effect of different mutations on AHAS function in Cyperus difformis and provided ideas for further study of resistance development.展开更多
Lesion mimic often exhibits leaf disease-like symptoms even in the absence of pathogen infection,and is characterized by a hypersensitive-response(HR)that closely linked to plant disease resistance.Despite this,only a...Lesion mimic often exhibits leaf disease-like symptoms even in the absence of pathogen infection,and is characterized by a hypersensitive-response(HR)that closely linked to plant disease resistance.Despite this,only a few lesion mimic genes have been identified in wheat.In this investigation,a lesion mimic wheat mutant named je0297 was discovered,showing no alteration in yield components when compared to the wild type(WT).Segregation ratio analysis of the F_(2)individuals resulting from the cross between the WT and the mutant revealed that the lesion mimic was governed by a single recessive gene in je0297.Using Bulked segregant analysis(BSA)and exome capture sequencing,we mapped the lesion mimic gene designated as lm6 to chromosome 6BL.Further gene fine mapping using 3315 F_(2)individuals delimited the lm6 within a 1.18 Mb region.Within this region,we identified 16 high-confidence genes,with only two displaying mutations in je0297.Notably,one of the two genes,responsible for encoding flavonol synthase,exhibited altered expression levels.Subsequent phenotype analysis of TILLING mutants confirmed that the gene encoding flavonol synthase was indeed the causal gene for lm6.Transcriptome sequencing analysis revealed that the DEGs between the WT and mutant were significantly enriched in KEGG pathways related to flavonoid biosynthesis,including flavone and flavonol biosynthesis,isoflavonoid biosynthesis,and flavonoid biosynthesis pathways.Furthermore,more than 30 pathogen infection-related(PR)genes exhibited upregulation in the mutant.Corresponding to this expression pattern,the flavonoid content in je0297 showed a significant decrease in the 4^(th)leaf,accompanied by a notable accumulation of reactive oxygen,which likely contributed to the development of lesion mimic in the mutant.This investigation enhances our comprehension of cell death signaling pathways and provides a valuable gene resource for the breeding of disease-resistant wheat.展开更多
Carboxyl ester lipase(CEL),a pivotal enzyme involved in lipid metabolism,is recurrently mutated in obese mice.Here,we aimed to elucidate the functional significance,molecular mechanism,and therapeutic potential of CEL...Carboxyl ester lipase(CEL),a pivotal enzyme involved in lipid metabolism,is recurrently mutated in obese mice.Here,we aimed to elucidate the functional significance,molecular mechanism,and therapeutic potential of CEL in metabolic dysfunction-associated steatohepatitis(MASH).Hepatocyte-specific carboxyl ester lipase gene(Cel)knockout(Cel^(DHEP))and wildtype(WT)littermates were fed with cholinedeficient high-fat diet(CD-HFD)for 16 weeks,or methionine-and choline-deficient diet(MCD)for three weeks to induce MASH.Liquid chromatography–mass spectrometry and co-immunoprecipitation were employed to identify the downstream targets of CEL.CD-HFD/MCD-fed WT mice received intravenous injections of CEL-adeno-associated viral,serotype 8(AAV8)to induce specific overexpression of CEL in the liver.We observed a decrease in CEL protein levels in MASH induced by CD-HFD or MCD in mice.Cel^(DHEP) mice fed with CD-HFD or MCD exhibited pronounced hepatic steatosis,inflammation,lipid peroxidation,and liver injury compared to WT littermates,accompanied by increased hepatic nuclear factor kappa-light-chain-enhancer of activated B cell(NF-jB)activation.Consistently,Cel knockdown in mouse primary hepatocytes and AML12 cells aggravated lipid accumulation and inflammation,whereas CEL overexpression exerted the opposite effect.Mechanistically,CEL directly bound to fatty acid synthase(FASN),resulting in reduced FASN SUMOylation,which in turn promoted FASN degradation through the proteasome pathway.Furthermore,inhibition of FASN ameliorated hepatocyte lipid accumulation and inflammation induced by Cel knockdown in vivo and in vitro.Hepatocyte-specific CEL overexpression using AAV8-Cel significantly mitigated steatohepatitis in mice fed with CD-HFD or MCD.CEL protects against steatohepatitis development by directly interacting with FASN and suppressing its expression for de novo lipogenesis.CEL overexpression confers a therapeutic benefit in steatohepatitis.展开更多
A ternary system of PTFE/Al/Bi_(2)O_(3)is constructed by incorporating PTFE-based reactive material and thermite for enhancing the energy release of the PTFE-based reactive material.The effects of Bi_(2)O_(3)in the PT...A ternary system of PTFE/Al/Bi_(2)O_(3)is constructed by incorporating PTFE-based reactive material and thermite for enhancing the energy release of the PTFE-based reactive material.The effects of Bi_(2)O_(3)in the PTFE/Al/Bi_(2)O_(3)on both mechanical properties and the energy release were investigated through various tests such as thermogravimetry-differential scanning calorimetry,adiabatic oxygen bomb test and split Hopkinson pressure bar test.The microstructure observed through scanning electron microscope and Xray diffraction results are used to analyze the ignition and reaction mechanism of PTFE/Al/Bi_(2)O_(3).The results indicate that the PTFE/Al/Bi_(2)O_(3)are capable of triggering the exothermic reaction of molten PTFE/Bi_(2)O_(3)and Al/Bi_(2)O_(3)over the PTFE/Al reactive materials,thereby promoting reactions.The excessive aluminum in the ternary system is beneficial for increasing energy release.The ignition of shock-induced chemical reactions in PTFE/Al/Bi_(2)O_(3)is closely related to the material fracture.The dominant mechanism for hot-spot generation under Split Hopkinson Pressure Bar test is the frictional temperature rise at the microcrack after failure.展开更多
Developing effective and long-term treatment strategies for rare and complex neurodegenerative diseases is challenging. One of the major roadblocks is the extensive heterogeneity among patients. This hinders understan...Developing effective and long-term treatment strategies for rare and complex neurodegenerative diseases is challenging. One of the major roadblocks is the extensive heterogeneity among patients. This hinders understanding the underlying disease-causing mechanisms and building solutions that have implications for a broad spectrum of patients. One potential solution is to develop personalized medicine approaches based on strategies that target the most prevalent cellular events that are perturbed in patients. Especially in patients with a known genetic mutation, it may be possible to understand how these mutations contribute to problems that lead to neurodegeneration. Protein–protein interaction analyses offer great advantages for revealing how proteins interact, which cellular events are primarily involved in these interactions, and how they become affected when key genes are mutated in patients. This line of investigation also suggests novel druggable targets for patients with different mutations. Here, we focus on alsin and spastin, two proteins that are identified as “causative” for amyotrophic lateral sclerosis and hereditary spastic paraplegia, respectively, when mutated. Our review analyzes the protein interactome for alsin and spastin, the canonical pathways that are primarily important for each protein domain, as well as compounds that are either Food and Drug Administration–approved or are in active clinical trials concerning the affected cellular pathways. This line of research begins to pave the way for personalized medicine approaches that are desperately needed for rare neurodegenerative diseases that are complex and heterogeneous.展开更多
Herbicide resistance in crop plants is valuable for integrated weed management in agriculture. Herbicide resistant rice, in particular, is important to management of weedy rice, a close relative of cultivated rice and...Herbicide resistance in crop plants is valuable for integrated weed management in agriculture. Herbicide resistant rice, in particular, is important to management of weedy rice, a close relative of cultivated rice and a noxious weed prevalent in rice fields that remains challenging to farmers worldwide. Herbicide resistant plants can be obtained through transgenic approach or by mutagenesis of regular plant and screening of mutants with elevated resistance to herbicide. In this study, we conducted ethyl methyl sulfonate mutagenesis(EMS) to elite indica cultivar Huanghuazhan(HHZ) and screened for mutants resistant to imazapic, a herbicide that can inhibit the acetolactate synthase(ALS) in plants. We obtained three mutants of Os ALS gene that have not been reported previously in rice. One of the mutants, with Trp_(548) changed to Met(W_(548)M), was analyzed in more details in this study. This mutation had no negative effect on the plant physiology and morphology as well as rice yield. Compared with the imidazolinone-resistant mutant S_(627)N(Ser_(627) changed to Asn) that has been deployed for Clearfield rice development, W_(548)M mutant showed high levels of resistance to a broad spectrum of five families of ALSinhibiting herbicides, in addition to a higher level of resistance to herbicides of the imidazolinone family.The herbicide-resistance was stably inherited by crossing into other rice lines. Thus, the W_(548)M mutation provides a valuable resource for breeding of herbicide resistant rice and weed management.展开更多
A series of polyhydroxyalkanoate(PHA)copolymers consisting of short-chain-length(SCL)and medium-chain-length(MCL)3-hydroxyalkanoate(3HA)monomers were synthesized in the recombinant Ralstonia eutropha PHB - 4 harboring...A series of polyhydroxyalkanoate(PHA)copolymers consisting of short-chain-length(SCL)and medium-chain-length(MCL)3-hydroxyalkanoate(3HA)monomers were synthesized in the recombinant Ralstonia eutropha PHB - 4 harboring a low-substrate-specificity PHA synthase PhaC2Ps from Pseudomonas stutzeri 1317. These polyesters,whose monomer compositions varied widely in chain length,were purified and characterized by acetone fractionation,nuclear magnetic resonance(NMR),gel-permeation chromatography(GPC),and differential scanning calorimetry(DSC).This was the first time that the physical properties of PHA copolymers polymerized by PhaC2Ps were characterized.The results indicated that the variation in MCL 3HA contents did not have an obvious influence on the molecular weights of these PHA copolymers but was effective in changing their physical properties. The variation in the thermal property of PHA copolymers with 3-hydroxyoctanoate(3HO)content was also inves- tigated in this study.展开更多
Thymidylate synthase(TS)is a key enzyme in the de novo biosynthesis of thymidine monophosphate,serving as a well-known drug target in chemotherapy against cancers and infectious diseases.Additional to its clinical val...Thymidylate synthase(TS)is a key enzyme in the de novo biosynthesis of thymidine monophosphate,serving as a well-known drug target in chemotherapy against cancers and infectious diseases.Additional to its clinical value,TS is supposed to be a promising drug target in aquatic-disease control.To facilitate designing pathogen-specific TS inhibitors for shrimp-disease control,we report the crystal structures of TS from Litopenaeus vannamei(LvTS)in the apo form,LvTS-dUMP complex and LvTS-dUMP-raltitrexed complex at 2.27Å,1.54Å,and 1.56Åresolution,respectively.LvTS shares a similar fold with known TSs,existing as a dimer in the crystal.The apo LvTS and LvTS-dUMP take an open conformation,and raltitrexed binding induces structural changes into a closed conformation in LvTS-dUMP-raltitrexed.Compared to those in other known TS-dUMP-raltitrexed complexes with the closed conformation,the C-terminal loop in LvTS-dUMP-raltitrexed shifts its position away from the bound raltitrexed;the distance between C6 of dUMP and Sγof the catalytic cysteine is obviously longer than that in the known TS structures with closed conformations,resembling that in the TS structures with open conformations.Other species-specific interactions with dUMP and raltitrexed are also observed.Therefore,LvTS-dUMP-raltitrexed adopts a loosely closed conformation with structural features intermediate between the closed and the open conformations that were reported in other TSs.Our study provides the first crustcean TS structure,and reveals species-specific interactions between TSs and the ligands,which would facilitate designing pathogen-specific TS inhibitors for shrimp-disease control.展开更多
基金funded by the National Natural Science Foundation of China(31972281)。
文摘Cyperus difformis L.is a troublesome weed in paddy fields and has attracted attention due to its resistance to acetohydroxyacid synthase(AHAS)inhibitors.It was found that the amino acid mutation in AHAS was the primary cause for the resistance of Cyperus difformis.However,the effect of different mutations on AHAS function is not clear in Cyperus difformis.To confirm the effect of mutations on AHAS function,six biotypes were collected,including Pro197Arg,Pro197Ser,Pro197Leu,Asp376Glu,Trp574Leu and wild type,from Hunan,Anhui,Jiangxi and Jiangsu provinces,China and the function of AHAS was characterized.The AHAS in vitro inhibition assay results indicated that the mutations decreased the sensitivity of AHAS to pyrazosulfuron-ethyl,in which the I_(50)(the half maximal inhibitory concentration)of wild type AHAS was 0.04μmol L^(-1)and Asp376Glu,Pro197Leu,Pro197Arg,Pro197Ser and Trp574Leu mutations were 3.98,11.50,40.38,38.19 and 311.43μmol L^(-1),respectively.In the determination of enzyme kinetics parameters,the Km and the maximum reaction velocity(Vmax)of the wild type were 5.18 mmol L^(-1)and 0.12 nmol mg^(-1)min^(-1),respectively,and the Km values of AHAS with Asp376Glu,Trp574Leu,Pro197Leu and Pro197Ser mutations were 0.38-0.93 times of the wild type.The Km value of the Pro197Arg mutation was 1.14times of the wild type,and the Vmax values of the five mutations were 1.17-3.33-fold compared to the wild type.It was found that the mutations increased the affinity of AHAS to the substrate,except for the Pro197Arg mutation.At a concentration of 0.0032-100 mmol L^(-1)branched-chain amino acids(BCAAs),the sensitivity of the other four mutant AHAS biotypes to feedback inhibition decreased,except for the Pro197Arg mutation.This study elucidated the effect of different mutations on AHAS function in Cyperus difformis and provided ideas for further study of resistance development.
基金supported by the National Key Research and Development Program of China(2022YFD1200700)the Nuclear Energy Development Research Program of the State Administration of Science,Technology,and Industry for National Defense(Crop Varietal Improvement and Insect Pests Control by Nuclear Radiation)the China Agriculture Research System of MOF and MARA(CARS-03)。
文摘Lesion mimic often exhibits leaf disease-like symptoms even in the absence of pathogen infection,and is characterized by a hypersensitive-response(HR)that closely linked to plant disease resistance.Despite this,only a few lesion mimic genes have been identified in wheat.In this investigation,a lesion mimic wheat mutant named je0297 was discovered,showing no alteration in yield components when compared to the wild type(WT).Segregation ratio analysis of the F_(2)individuals resulting from the cross between the WT and the mutant revealed that the lesion mimic was governed by a single recessive gene in je0297.Using Bulked segregant analysis(BSA)and exome capture sequencing,we mapped the lesion mimic gene designated as lm6 to chromosome 6BL.Further gene fine mapping using 3315 F_(2)individuals delimited the lm6 within a 1.18 Mb region.Within this region,we identified 16 high-confidence genes,with only two displaying mutations in je0297.Notably,one of the two genes,responsible for encoding flavonol synthase,exhibited altered expression levels.Subsequent phenotype analysis of TILLING mutants confirmed that the gene encoding flavonol synthase was indeed the causal gene for lm6.Transcriptome sequencing analysis revealed that the DEGs between the WT and mutant were significantly enriched in KEGG pathways related to flavonoid biosynthesis,including flavone and flavonol biosynthesis,isoflavonoid biosynthesis,and flavonoid biosynthesis pathways.Furthermore,more than 30 pathogen infection-related(PR)genes exhibited upregulation in the mutant.Corresponding to this expression pattern,the flavonoid content in je0297 showed a significant decrease in the 4^(th)leaf,accompanied by a notable accumulation of reactive oxygen,which likely contributed to the development of lesion mimic in the mutant.This investigation enhances our comprehension of cell death signaling pathways and provides a valuable gene resource for the breeding of disease-resistant wheat.
基金supported by the National Natural Science Foundation of China(82222901,82103355,and 82272619)the Innovation and Technology Fund—Guangdong–Hong Kong Technology Cooperation Funding Scheme(GHP/086/21GD)+4 种基金the Research Grants Council(RGC)Theme-based Research Scheme(T12-703/19-R)the Research Grants Council-General Research Fund(14117422 and 14117123)the Health and Medical Research Fund,Hong Kong(08191336 and 07210097)the CUHK Research Startup Fund(FPU/2023/149)the Natural Science Foundation of Fujian Province(2020J01122587).
文摘Carboxyl ester lipase(CEL),a pivotal enzyme involved in lipid metabolism,is recurrently mutated in obese mice.Here,we aimed to elucidate the functional significance,molecular mechanism,and therapeutic potential of CEL in metabolic dysfunction-associated steatohepatitis(MASH).Hepatocyte-specific carboxyl ester lipase gene(Cel)knockout(Cel^(DHEP))and wildtype(WT)littermates were fed with cholinedeficient high-fat diet(CD-HFD)for 16 weeks,or methionine-and choline-deficient diet(MCD)for three weeks to induce MASH.Liquid chromatography–mass spectrometry and co-immunoprecipitation were employed to identify the downstream targets of CEL.CD-HFD/MCD-fed WT mice received intravenous injections of CEL-adeno-associated viral,serotype 8(AAV8)to induce specific overexpression of CEL in the liver.We observed a decrease in CEL protein levels in MASH induced by CD-HFD or MCD in mice.Cel^(DHEP) mice fed with CD-HFD or MCD exhibited pronounced hepatic steatosis,inflammation,lipid peroxidation,and liver injury compared to WT littermates,accompanied by increased hepatic nuclear factor kappa-light-chain-enhancer of activated B cell(NF-jB)activation.Consistently,Cel knockdown in mouse primary hepatocytes and AML12 cells aggravated lipid accumulation and inflammation,whereas CEL overexpression exerted the opposite effect.Mechanistically,CEL directly bound to fatty acid synthase(FASN),resulting in reduced FASN SUMOylation,which in turn promoted FASN degradation through the proteasome pathway.Furthermore,inhibition of FASN ameliorated hepatocyte lipid accumulation and inflammation induced by Cel knockdown in vivo and in vitro.Hepatocyte-specific CEL overexpression using AAV8-Cel significantly mitigated steatohepatitis in mice fed with CD-HFD or MCD.CEL protects against steatohepatitis development by directly interacting with FASN and suppressing its expression for de novo lipogenesis.CEL overexpression confers a therapeutic benefit in steatohepatitis.
基金the National Natural Science Foundation of China (Grant No.12002045)State Key Laboratory of Explosion Science and Technology,Beijing Institute of Technology (Grant No.QNKT22-09)。
文摘A ternary system of PTFE/Al/Bi_(2)O_(3)is constructed by incorporating PTFE-based reactive material and thermite for enhancing the energy release of the PTFE-based reactive material.The effects of Bi_(2)O_(3)in the PTFE/Al/Bi_(2)O_(3)on both mechanical properties and the energy release were investigated through various tests such as thermogravimetry-differential scanning calorimetry,adiabatic oxygen bomb test and split Hopkinson pressure bar test.The microstructure observed through scanning electron microscope and Xray diffraction results are used to analyze the ignition and reaction mechanism of PTFE/Al/Bi_(2)O_(3).The results indicate that the PTFE/Al/Bi_(2)O_(3)are capable of triggering the exothermic reaction of molten PTFE/Bi_(2)O_(3)and Al/Bi_(2)O_(3)over the PTFE/Al reactive materials,thereby promoting reactions.The excessive aluminum in the ternary system is beneficial for increasing energy release.The ignition of shock-induced chemical reactions in PTFE/Al/Bi_(2)O_(3)is closely related to the material fracture.The dominant mechanism for hot-spot generation under Split Hopkinson Pressure Bar test is the frictional temperature rise at the microcrack after failure.
基金funded by NIH-NIA R01AG061708 (to PHO)Patrick Grange Memorial Foundation (to PHO)+1 种基金A Long Swim (to PHO)CureSPG4 Foundation (to PHO)。
文摘Developing effective and long-term treatment strategies for rare and complex neurodegenerative diseases is challenging. One of the major roadblocks is the extensive heterogeneity among patients. This hinders understanding the underlying disease-causing mechanisms and building solutions that have implications for a broad spectrum of patients. One potential solution is to develop personalized medicine approaches based on strategies that target the most prevalent cellular events that are perturbed in patients. Especially in patients with a known genetic mutation, it may be possible to understand how these mutations contribute to problems that lead to neurodegeneration. Protein–protein interaction analyses offer great advantages for revealing how proteins interact, which cellular events are primarily involved in these interactions, and how they become affected when key genes are mutated in patients. This line of investigation also suggests novel druggable targets for patients with different mutations. Here, we focus on alsin and spastin, two proteins that are identified as “causative” for amyotrophic lateral sclerosis and hereditary spastic paraplegia, respectively, when mutated. Our review analyzes the protein interactome for alsin and spastin, the canonical pathways that are primarily important for each protein domain, as well as compounds that are either Food and Drug Administration–approved or are in active clinical trials concerning the affected cellular pathways. This line of research begins to pave the way for personalized medicine approaches that are desperately needed for rare neurodegenerative diseases that are complex and heterogeneous.
基金financially supported by the Major Special Projects in Anhui Province,China(No.202003c08020005)the Key Projects in Hunan Province,China(No.2020GK2045)+1 种基金the Science and Technology Innovation Program of Hunan Province,China(No.2021RC4036)Postgraduate Scientific Research Innovation Project of Hunan Province,China(No.CX20211079)。
基金supported by Major Program of Guangdong Basic and Applied Research(2019B030302006)National Natural Science Foundation of China(U1901203 and 31901532)+2 种基金Natural Science Foundation of Guangdong Province(2018B030308008 and 2018A0303130270)Shenzhen Commission on Innovation and Technology Programs(JCYJ20180507181837997)China Postdoctoral Science Foundation(2018M633069 and 2019M652920)。
文摘Herbicide resistance in crop plants is valuable for integrated weed management in agriculture. Herbicide resistant rice, in particular, is important to management of weedy rice, a close relative of cultivated rice and a noxious weed prevalent in rice fields that remains challenging to farmers worldwide. Herbicide resistant plants can be obtained through transgenic approach or by mutagenesis of regular plant and screening of mutants with elevated resistance to herbicide. In this study, we conducted ethyl methyl sulfonate mutagenesis(EMS) to elite indica cultivar Huanghuazhan(HHZ) and screened for mutants resistant to imazapic, a herbicide that can inhibit the acetolactate synthase(ALS) in plants. We obtained three mutants of Os ALS gene that have not been reported previously in rice. One of the mutants, with Trp_(548) changed to Met(W_(548)M), was analyzed in more details in this study. This mutation had no negative effect on the plant physiology and morphology as well as rice yield. Compared with the imidazolinone-resistant mutant S_(627)N(Ser_(627) changed to Asn) that has been deployed for Clearfield rice development, W_(548)M mutant showed high levels of resistance to a broad spectrum of five families of ALSinhibiting herbicides, in addition to a higher level of resistance to herbicides of the imidazolinone family.The herbicide-resistance was stably inherited by crossing into other rice lines. Thus, the W_(548)M mutation provides a valuable resource for breeding of herbicide resistant rice and weed management.
基金Supported by the National Natural Science Foundation of China (No.30225001, No.20334020). The authors are very grateful to Prof. A. Steinbiichel of the University of Miinster in Germany for the generous donation of strain R. eutropha PHB 4.
文摘A series of polyhydroxyalkanoate(PHA)copolymers consisting of short-chain-length(SCL)and medium-chain-length(MCL)3-hydroxyalkanoate(3HA)monomers were synthesized in the recombinant Ralstonia eutropha PHB - 4 harboring a low-substrate-specificity PHA synthase PhaC2Ps from Pseudomonas stutzeri 1317. These polyesters,whose monomer compositions varied widely in chain length,were purified and characterized by acetone fractionation,nuclear magnetic resonance(NMR),gel-permeation chromatography(GPC),and differential scanning calorimetry(DSC).This was the first time that the physical properties of PHA copolymers polymerized by PhaC2Ps were characterized.The results indicated that the variation in MCL 3HA contents did not have an obvious influence on the molecular weights of these PHA copolymers but was effective in changing their physical properties. The variation in the thermal property of PHA copolymers with 3-hydroxyoctanoate(3HO)content was also inves- tigated in this study.
基金Supported by the National Natural Science Foundation of China(Nos.31572660,31872600)the“1000 Talents Program”,and the Qingdao Innovation Leadership Project(No.18-1-2-12-zhc)。
文摘Thymidylate synthase(TS)is a key enzyme in the de novo biosynthesis of thymidine monophosphate,serving as a well-known drug target in chemotherapy against cancers and infectious diseases.Additional to its clinical value,TS is supposed to be a promising drug target in aquatic-disease control.To facilitate designing pathogen-specific TS inhibitors for shrimp-disease control,we report the crystal structures of TS from Litopenaeus vannamei(LvTS)in the apo form,LvTS-dUMP complex and LvTS-dUMP-raltitrexed complex at 2.27Å,1.54Å,and 1.56Åresolution,respectively.LvTS shares a similar fold with known TSs,existing as a dimer in the crystal.The apo LvTS and LvTS-dUMP take an open conformation,and raltitrexed binding induces structural changes into a closed conformation in LvTS-dUMP-raltitrexed.Compared to those in other known TS-dUMP-raltitrexed complexes with the closed conformation,the C-terminal loop in LvTS-dUMP-raltitrexed shifts its position away from the bound raltitrexed;the distance between C6 of dUMP and Sγof the catalytic cysteine is obviously longer than that in the known TS structures with closed conformations,resembling that in the TS structures with open conformations.Other species-specific interactions with dUMP and raltitrexed are also observed.Therefore,LvTS-dUMP-raltitrexed adopts a loosely closed conformation with structural features intermediate between the closed and the open conformations that were reported in other TSs.Our study provides the first crustcean TS structure,and reveals species-specific interactions between TSs and the ligands,which would facilitate designing pathogen-specific TS inhibitors for shrimp-disease control.