Metal-organic frameworks(MOFs) are important functional materials. MOF-5(IL)(Zn4O(BDC)3(BDC=1,4-benzenedicarboxylate) was in situ synthesized by the electrochemical method using a tunable ionic liquid(IL), ...Metal-organic frameworks(MOFs) are important functional materials. MOF-5(IL)(Zn4O(BDC)3(BDC=1,4-benzenedicarboxylate) was in situ synthesized by the electrochemical method using a tunable ionic liquid(IL), 1-butyl-3-methylimidazolium chloride, as template. The crystallization of distinctly spherical MOF-5(IL) synthsized in ionic liquid by the electrochemical method is attributed to π-π stacking effect, ionic bond, and coordination bond. The analysis results show that the product MOF-5(IL) exhibits better crystallinity and higher thermal stability than MOF-5 generated using the solvothermal method. The cyclic voltammetry reveals that the electrosynthesis reaction is irreversible and controlled by the diffusion. The experiments on methylorange degradation show that the unique structure characteristics of MOF-5(IL) can enhance the photocatalytic ability of Bi OBr. Therefore, MOFs can replace noble metals to improve the photocatalytic properties of bismuth oxyhalide.展开更多
SAPO-34 zeolite is considered to be an effective catalyst for methanol or dimethyl ether conversion to olefins. In this study,we developed the in situ synthesis technology to prepare SAPO-34 zeolite in kaolin micro-sp...SAPO-34 zeolite is considered to be an effective catalyst for methanol or dimethyl ether conversion to olefins. In this study,we developed the in situ synthesis technology to prepare SAPO-34 zeolite in kaolin micro-spheres as a catalyst for fluidized methanol or dimethyl ether to olefins process. The silicoaluminophosphate zeolite was first time reported to be synthesized in kaolin microspheres. The SAPO-34 content of synthesized catalyst was about 22% as measured by three different quantitative methods(micropore area,X-ray fluorescence and energy dispersive spectroscopy element analysis) . Most of the SAPO-34 zeolites were in nanoscale size and distributed uniformly inside the spheres. The catalytic performance was evaluated in fixed bed and fluidized bed reactors. Compared with the conventional spray-dry catalyst,SAPO/kaolin catalyst showed superior catalytic activities,bet-ter olefin selectivities(up to 94%,exclusive coke) ,and very good hydrothermal stability. The in situ synthesis of SAPO-34 in kaolin microspheres is a facile and economically feasible way to prepare more effective catalyst for fluidized MTO/DTO(methanol to olefins/dimethyl ether to olefins) process.展开更多
ZrB2 in MgO-C composite materials obtained by both microwave sintering synthesis and in-situ reaction at lower temperature was investigated. The test result shows that 66.67 % of reactant changed into Zrb2, and the ot...ZrB2 in MgO-C composite materials obtained by both microwave sintering synthesis and in-situ reaction at lower temperature was investigated. The test result shows that 66.67 % of reactant changed into Zrb2, and the other form Al2O3, which could optimize the properties of carbon containing materials. Therefore, the method of in situ synthesizing ZrB2 acting as antioxidant in carbon containing materials is considered as one of best ways to reduce the cost and ZrB2 as refractories is used on a large-scale.展开更多
One novel 3D 3d-4f coordination polymer, [LaZn(glc)(ox)2(H20)2]n (1, glc = glycinate, ox = oxalate), was obtained by the in situ synthesis of glycinate from the reaction of tetrazole-l-acetic acid, sodium oxal...One novel 3D 3d-4f coordination polymer, [LaZn(glc)(ox)2(H20)2]n (1, glc = glycinate, ox = oxalate), was obtained by the in situ synthesis of glycinate from the reaction of tetrazole-l-acetic acid, sodium oxalate, zinc nitrate and lanthanide oxide in the presence of a trace quantity of nitric acid under hydrothermal conditions. Compound 1 is of monoclinic, space group P21/n with a = 0.99601(9), b = 1.14592(10), c = 1.19107(10) nm and β = 108.7150(10)°. 1 exhibits an unusual 3D heterometallic coordination framework constructed by heterometallic dinuclear LaZn subunits and mixed ox and glc linkers with a uninodal 6-connected vine {33.43.58.6} net.展开更多
The mononuclear complex, Cu(H2SIP-O)(bpy)(H2O) (H4SIP-O = 4-hydroxyl- 5-sulfoisophthalic acid and bpy = 2,2'-dipyridyl), has been synthesized by the hydrothermal reaction of Cu(OH)2 with NaH2SIP and bpy at ...The mononuclear complex, Cu(H2SIP-O)(bpy)(H2O) (H4SIP-O = 4-hydroxyl- 5-sulfoisophthalic acid and bpy = 2,2'-dipyridyl), has been synthesized by the hydrothermal reaction of Cu(OH)2 with NaH2SIP and bpy at 160 ℃, and characterized by single-crystal X-ray diffraction, elemental analysis and IR spectrum. The new ligand 4-hydroxyl-5-sulfoisophthalic acid derived from 5-sulfoisophthalic acid ligand under an in situ hydrothermal condition. The crystal of the complex crystallizes in a triclinic system, space group P1, with a = 7.757(4), b = 10.663(6), c = 11.727(7)A, α = 94.272(4), β = 104.067(7), γ = 97.400(7)°, V= 927.4(9)A^3, Z = 2, C18H14N2O9SCu, Mr= 497.93, Dc= 1.783 g/cm^3,μ = 1.350 mm^-1, F(000) = 506, the final R = 0.0518 and wR = 0.1513 for 4180 observed reflections with I 〉 2σ(I). The central Cu(II) ion is five-coordinated by two oxygen atoms from the H2SIP-O^2- ligand and two nitrogen atoms of bpy ligand in a distorted square-planar geometry as well as a water oxygen atom in the apical position to complete a distorted square-pyramidal coordination geometry. The mononuclear copper molecules are linked by hydrogen bonds between coordinated water molecules and sulfonate groups to form a one-dimensional double-chain structure. The chains are further held together through extensive π-π stacking interactions between the aromatic rings to form a three- dimensional supramolecular structure.展开更多
A process for in situ synthesis of terbium complex with salicylic acid by a two-step solgel method in silica matrix has been proposed. The luminescence properties of the silica gelscodoped with terbium and salicylic a...A process for in situ synthesis of terbium complex with salicylic acid by a two-step solgel method in silica matrix has been proposed. The luminescence properties of the silica gelscodoped with terbium and salicylic acid have also been discussed with respect to that of the geldoped with terbium and that of pure terbium complex with salicylic acid.展开更多
Fe-based alloy coatings containing TiB2–TiN –(h-BN) were synthesized in situ on Q235 steel substrates by a plasma cladding process using the powders of Fe901 alloy, Ti, and h-BN as raw materials. The effects of Ti...Fe-based alloy coatings containing TiB2–TiN –(h-BN) were synthesized in situ on Q235 steel substrates by a plasma cladding process using the powders of Fe901 alloy, Ti, and h-BN as raw materials. The effects of Ti/h-BN mass ratio on interfacial bonds between the coating and substrate along with the microstructures and microhardnesses of the coatings were investigated. The results show that the Ti/h-BN mass ratio is a vital factor in the formation of the coatings. Free h-BN can be introduced into the coatings by adding an excess amount of h-BN into the precursor. Decreases in the Ti/h-BN mass ratio improve the microstructural uniformity and compactness and enhance the interfacial bonds of the coatings. At a Ti/h-BN mass ratio of 10/20, the coating is free of cracks and micropores, and mainly consists of Fe-Cr, Fe3B, TiB2, TiN, Ti2N, TiB, FeN, FeB, Fe2B, and h-BN phases. Its average microhardness in the zone between 0.1–2.8 mm from the coating surface is about Hv0.2 551.5.展开更多
A novel maskless technique, self-driving micro-fluid porous type printing (SMPTP), was reported to in situ synthesize oligonucleotide arrays on glass slide, which has the merits of low cost, high quality and simple ...A novel maskless technique, self-driving micro-fluid porous type printing (SMPTP), was reported to in situ synthesize oligonucleotide arrays on glass slide, which has the merits of low cost, high quality and simple craft. In SMPTP for fabricating gene- chips, porous fiber tubes with a number of nanometric or micron channels functioned as "active letters" and were assembled in designed patterns, which are identical to the distribution of monomers in each layer of the array, and four patterns were needed for each layer. By means of capillarity, the synthesis solution was automatically taken into porous tubes assembled in a printing plate and reached the surface. An oligonucleotide array of 160 features with four different 15-mer probes was in situ synthesized using this technique. The four specific oligonucleotide probes, including the matched and the mismatched by the fluorescent target sequence, gave obviously different hybridization fluorescent signals.展开更多
In situ surface synthesis of Ca–Mg–Al hydrotalcite(HT) on inorganic ceramic membrane(CM) was investigated with urea as precipitator. The effects of molar ratio of raw materials, crystallization time, and temperature...In situ surface synthesis of Ca–Mg–Al hydrotalcite(HT) on inorganic ceramic membrane(CM) was investigated with urea as precipitator. The effects of molar ratio of raw materials, crystallization time, and temperature on surface synthesis of HT were examined. The as-prepared HT/CM samples were characterized by XRD and SEM and an in situ growth mechanism of HT on CM was proposed. KF/HT/CM obtained by loading potassium fluoride(KF) on the HT layer by impregnation and calcination method was used as catalyst for transesterification between palm oil and methanol. The comparison of KF/HT/CM and pure KF/HT powder under identical reaction conditions shows that the production of fatty acid methyl ester is equivalent, which means that the use of inorganic catalytic membrane in the transesterification is a viable alternative.展开更多
Using Al Mg and Al Mg Y alloys as raw materials and nitrogen as gas reactants, AlN powders and composite AlN powders by in situ synthesis method were prepared. AlN lumps prepared by the nitriding of Al Mg and Al ...Using Al Mg and Al Mg Y alloys as raw materials and nitrogen as gas reactants, AlN powders and composite AlN powders by in situ synthesis method were prepared. AlN lumps prepared by the nitriding of Al Mg and Al Mg Y alloys have porous microstructure, which is favorable for pulverization. They have high purity, containing 1.23%(mass fraction) oxygen impurity, and consisted of AlN single phase. The average particle size of AlN powders is 6.78 μm. Composite AlN powders consist of AlN phases and rare earth oxide Y 2O 3 phase. The distribution of particle size of AlN powders shows two peaks. In view of packing factor, AlN powders with such size distribution can easily be sintered to high density.展开更多
The porcine microsatellite SW943 was regionally localized on 12p11-(2/3p13) by the two methods: the Primed in situ (PRINS) labelling on the pachytene bivalents of pigs using the Dig-11-dUTP as the report molecule and ...The porcine microsatellite SW943 was regionally localized on 12p11-(2/3p13) by the two methods: the Primed in situ (PRINS) labelling on the pachytene bivalents of pigs using the Dig-11-dUTP as the report molecule and pig X rodent Somatic Cell Hybrid Panel (SCHP) which contains 27 cell lines through PCR amplification. Advantages and disadvantages of the two methods for physical mapping of microsatellites were also discussed.展开更多
A novel substrate for in situ synthesis of oligonucleotide was prepared by hydrolyzing microporous polyamide-6 membranes in a 0.01mol/L NaOH/(H2O-CH3OH) mixture medium. The formation of amines (NH2) on the surface was...A novel substrate for in situ synthesis of oligonucleotide was prepared by hydrolyzing microporous polyamide-6 membranes in a 0.01mol/L NaOH/(H2O-CH3OH) mixture medium. The formation of amines (NH2) on the surface was proved by attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR). The treated membrane was applied for in situ synthesis of oligonucleotide and a single step coupling efficiency determined by ultraviolet (UV) spectra was above 98 %.展开更多
Polypropylene microporous membranes were treated with plasma in a mixture of N2 and H2 (1:2 in volume). Attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FT1R), X-ray photoelectron spectroscopy...Polypropylene microporous membranes were treated with plasma in a mixture of N2 and H2 (1:2 in volume). Attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FT1R), X-ray photoelectron spectroscopy (XPS) and ultra-violet (UV) spectra demonstrated the success of grafting amino groups. The density of the polar amino groups on the membrane surface is about 0.59 μmol/cm2. The as-treated membranes were successively applied to the in situ synthesis of oligonucleotides and an average coupling yield was more than 98%. The surface feature of the treated membrane is suggested to be responsible for its advantage over a glass slide.展开更多
ZSM-5 zeolites were directly synthesized on the surface of honeycomb cordierite substrates by hydrothermal method and certified by XRD and SEM techniques; the adhesion of ZSM-5 coatings was evaluated by ultrasonic vib...ZSM-5 zeolites were directly synthesized on the surface of honeycomb cordierite substrates by hydrothermal method and certified by XRD and SEM techniques; the adhesion of ZSM-5 coatings was evaluated by ultrasonic vibration. Cu-ZSM-5/cordierite monolithic catalyst was prepared by ion-exchange and impregnation method and applied for the selective catalytic reduction (SCR) of NO by NH3 using a simulated diesel exhaust. The results show that the cordierite surface is almost completely covered by ZSM-5 crystals and the crystallization time greatly impacts the loadings and adhesion of ZSM-5 coatings on substrate, the NOx removal rate over Cu-ZSM-5/cordierite is above 90% in a temperature range of 240-480℃. Moreover, Cu-ZSM-5/cordierite prepared by different methods shows a wide temperature window (240-540 ℃) with high NO removal activities.展开更多
Titanium-based composite coatings reinforced by in situ synthesized TiB and TiC particles between titanium and B4C were successfully fabricated on Ti6Al4V by laser cladding. Phase constituents of the coatings were pre...Titanium-based composite coatings reinforced by in situ synthesized TiB and TiC particles between titanium and B4C were successfully fabricated on Ti6Al4V by laser cladding. Phase constituents of the coatings were predicted by thermodynamic calculations in the Ti-BnC-Al and Ti-B-C-Al systems, respectively, and were validated well by X-ray diffraction (XRD) analysis results. Microstructural and metallographic analyses were made by scanning electron microscopy (SEM) and electron probe micro-analysis (EPMA). The results show that the coatings are mainly composed of α-Ti cellular dendrites and the eutecticum in which a large number of needle-shaped TiB and a few equiaxial TiC particles are embedded. C is enriched in α-Ti cellular dendrites and far exceeds the theoretical maximum dissolubility, owing to the extension of saturation during laser cladding. The coatings have a good metallurgical bond with the substrate due to the existence of the dilution zone, in which a great amount of lamella β-Ti grains consisting of a thin needle-shaped martensitic microstructure are present and grow parallel to the heat flux direction; a few TiB and TiC reinforcements are observed at the boundaries of initial β-Ti grains.展开更多
A titanium-based composite coating reinforced by in situ synthesized TiB and TiC particles was fabricated on Ti6A14V by laser cladding. The microstructure and mechanical properties were investigated. The coating was m...A titanium-based composite coating reinforced by in situ synthesized TiB and TiC particles was fabricated on Ti6A14V by laser cladding. The microstructure and mechanical properties were investigated. The coating was mainly composed of a-Ti cellular dendrites and an eutectic in which a large number of rod/ needle-shaped TiB and a few equiaxial TiC particles were homogeneously embedded. The microstructural evolution could be divided into four stages: precipitation and growth of primary fl-Ti phase, formation of the binary eutectic fl-Ti+TiB, formation of the ternary eutectic fl-Ti+TiB+TiC, and solid transformation from fl-Ti to a-Ti. Microhardness of the coating showed a gradient variation from the surface (about HV0.2 876) to the bottom (about HV0.2 660) and was prominently improved in comparison with that of the substrate. Fracture toughness of the coating also exhibited a gradient variation from the surface (6.3 MPa-m1/2) to the interface (11.9 MPa-mV2). Wear resistance of the coating was significantly superior to that of Ti6A14V.展开更多
The in situ synthesized NbC particles reinforced Ni-based alloy composite coating was produced by laser cladding a precursor mixture of Ni-based alloy powder, graphite and niobium powders on a steel substrate. The mic...The in situ synthesized NbC particles reinforced Ni-based alloy composite coating was produced by laser cladding a precursor mixture of Ni-based alloy powder, graphite and niobium powders on a steel substrate. The microstructure, phase composition and wear property of the composite coating were investigated by means of scanning electron microscopy (SEM), X-ray diffraction (XRD) and dry sliding wear test. The experiment results show that the composite coating is homogeneous and free from cracks, and about 0.8 mm thick. The microstructure of the composite coating is mainly composed of NbC particles, CrB type chromium borides, 7-Ni primary dendrites, and interdendritic eutectics. CrB phases often nucleate and grow on the surface of NbC particles or in their close vicinity. NbC particles are formed via in situ reaction between niobium and graphite in the molten pool during the laser cladding process and they are commonly precipitated in three kinds of morphologies, such as quadrangle, cluster, and flower-like shape. Compared with the pure Ni- based alloy coating, the microhardness of the composite coating is increased about 38%, giving a high average hardness of HV0.21000, and the wear rate of the composite coating is decreased by about 32%, respectively. These are attributed to the presence of in situ synthesized NbC particles and their well distribution in the coating.展开更多
A simple and scalable synthetic approach for one-step synthesis of graphene–Cu O(TRGC) nanocomposite by an in situ thermo-annealing method has been developed.Using graphene oxide(GO) and copper hydroxide as a precurs...A simple and scalable synthetic approach for one-step synthesis of graphene–Cu O(TRGC) nanocomposite by an in situ thermo-annealing method has been developed.Using graphene oxide(GO) and copper hydroxide as a precursors reagent,the reduction of GO and the uniform deposition of in situ formed Cu O nanoparticles on graphene was simultaneously achieved.The method employed no solvents,toxic-reducing agents,or organic modifiers.The resulting nanostructured hybrid exhibited improved H2 S sorption capacity of 1.5 mmol H2S/g-sorbent(3 g S/100 g-sorbent).Due to its highly dispersed sub-20 nm Cu O nanoparticles and large specific surface area,TRGC nanocomposite exhibits tremendous potential for energy and environment applications.展开更多
Nickel-based composite coatings reinforced by in situ synthesized TiB2 and WC particles were deposited on stainless steel by laser cladding, and their microstmcture and mechanical properties were investigated. The res...Nickel-based composite coatings reinforced by in situ synthesized TiB2 and WC particles were deposited on stainless steel by laser cladding, and their microstmcture and mechanical properties were investigated. The results show that the coatings are mainly composed of 7-Ni cellular dendrites and dispersed spherical/strip/network shaped TiB2 and equiaxial WC particles. The initial WC particles are dissolved to become fine and mostly dispersed within Y-Ni cellular dendrites. The coating prepared at a special laser energy of 0.225 kJ@mm^-2 is uniform, continuous, and free of pores and cracks. With the decrease in special energy density, TiB2 phase changes from fine spherical particles which cluster together to strip shape with different morphologies and further crystallizes to form network structure, and the dispersion zone also gradually changes from intragranular to intergranular phase. The coating possesses a higher microhardness compared with the substrate, and it has a good metallurgical bond with the substrate and excellent cracking resistance.展开更多
An in situ reduction method has been developed to fabricate metallic Ag nanoparticles inside the channels of mesoporous carbon CMK-3. This approach combines function of the CMK-3 surface by oxidation using HNO3 with t...An in situ reduction method has been developed to fabricate metallic Ag nanoparticles inside the channels of mesoporous carbon CMK-3. This approach combines function of the CMK-3 surface by oxidation using HNO3 with the subsequent absorption of Ag^+ The resultant nanocomposite materials were characterized by nitrogen adsorption, X-ray diffraction, Auger electron spectroscopy and transmission electron microscopy. Compared with the conventional impregnation method, our approach shows that Ag nanonarticles of 2-4 nm can be uniformlv incorporated into CMK-3.展开更多
基金Project(U1261103)jointly supported by the National Natural Science Foundation of China and Shenhua Group Corp
文摘Metal-organic frameworks(MOFs) are important functional materials. MOF-5(IL)(Zn4O(BDC)3(BDC=1,4-benzenedicarboxylate) was in situ synthesized by the electrochemical method using a tunable ionic liquid(IL), 1-butyl-3-methylimidazolium chloride, as template. The crystallization of distinctly spherical MOF-5(IL) synthsized in ionic liquid by the electrochemical method is attributed to π-π stacking effect, ionic bond, and coordination bond. The analysis results show that the product MOF-5(IL) exhibits better crystallinity and higher thermal stability than MOF-5 generated using the solvothermal method. The cyclic voltammetry reveals that the electrosynthesis reaction is irreversible and controlled by the diffusion. The experiments on methylorange degradation show that the unique structure characteristics of MOF-5(IL) can enhance the photocatalytic ability of Bi OBr. Therefore, MOFs can replace noble metals to improve the photocatalytic properties of bismuth oxyhalide.
基金Supported by the National Natural Science Foundation of China(20736004)
文摘SAPO-34 zeolite is considered to be an effective catalyst for methanol or dimethyl ether conversion to olefins. In this study,we developed the in situ synthesis technology to prepare SAPO-34 zeolite in kaolin micro-spheres as a catalyst for fluidized methanol or dimethyl ether to olefins process. The silicoaluminophosphate zeolite was first time reported to be synthesized in kaolin microspheres. The SAPO-34 content of synthesized catalyst was about 22% as measured by three different quantitative methods(micropore area,X-ray fluorescence and energy dispersive spectroscopy element analysis) . Most of the SAPO-34 zeolites were in nanoscale size and distributed uniformly inside the spheres. The catalytic performance was evaluated in fixed bed and fluidized bed reactors. Compared with the conventional spray-dry catalyst,SAPO/kaolin catalyst showed superior catalytic activities,bet-ter olefin selectivities(up to 94%,exclusive coke) ,and very good hydrothermal stability. The in situ synthesis of SAPO-34 in kaolin microspheres is a facile and economically feasible way to prepare more effective catalyst for fluidized MTO/DTO(methanol to olefins/dimethyl ether to olefins) process.
基金ItemSponsored by National"863"Plan (2002AA335060) National Natural Science Foundation of China (50332010)
文摘ZrB2 in MgO-C composite materials obtained by both microwave sintering synthesis and in-situ reaction at lower temperature was investigated. The test result shows that 66.67 % of reactant changed into Zrb2, and the other form Al2O3, which could optimize the properties of carbon containing materials. Therefore, the method of in situ synthesizing ZrB2 acting as antioxidant in carbon containing materials is considered as one of best ways to reduce the cost and ZrB2 as refractories is used on a large-scale.
基金Supported by Public science and technology research funds projects of ocean (No. 2000905021)the Guangdong Oceanic Fisheries Technology Promotion Project (No. A2009003-018(c))+1 种基金the Guangdong Chinese Academy of Sciences comprehensive strategic cooperation project (No. 2009B091300121)the Guangdong Province key project in the field of social development (No. A2009011-007(c))
文摘One novel 3D 3d-4f coordination polymer, [LaZn(glc)(ox)2(H20)2]n (1, glc = glycinate, ox = oxalate), was obtained by the in situ synthesis of glycinate from the reaction of tetrazole-l-acetic acid, sodium oxalate, zinc nitrate and lanthanide oxide in the presence of a trace quantity of nitric acid under hydrothermal conditions. Compound 1 is of monoclinic, space group P21/n with a = 0.99601(9), b = 1.14592(10), c = 1.19107(10) nm and β = 108.7150(10)°. 1 exhibits an unusual 3D heterometallic coordination framework constructed by heterometallic dinuclear LaZn subunits and mixed ox and glc linkers with a uninodal 6-connected vine {33.43.58.6} net.
基金Supported by the Education Department of Jiangxi Province (No 2007-125)the Initial Fund for Doctors from Jiangxi Normal University
文摘The mononuclear complex, Cu(H2SIP-O)(bpy)(H2O) (H4SIP-O = 4-hydroxyl- 5-sulfoisophthalic acid and bpy = 2,2'-dipyridyl), has been synthesized by the hydrothermal reaction of Cu(OH)2 with NaH2SIP and bpy at 160 ℃, and characterized by single-crystal X-ray diffraction, elemental analysis and IR spectrum. The new ligand 4-hydroxyl-5-sulfoisophthalic acid derived from 5-sulfoisophthalic acid ligand under an in situ hydrothermal condition. The crystal of the complex crystallizes in a triclinic system, space group P1, with a = 7.757(4), b = 10.663(6), c = 11.727(7)A, α = 94.272(4), β = 104.067(7), γ = 97.400(7)°, V= 927.4(9)A^3, Z = 2, C18H14N2O9SCu, Mr= 497.93, Dc= 1.783 g/cm^3,μ = 1.350 mm^-1, F(000) = 506, the final R = 0.0518 and wR = 0.1513 for 4180 observed reflections with I 〉 2σ(I). The central Cu(II) ion is five-coordinated by two oxygen atoms from the H2SIP-O^2- ligand and two nitrogen atoms of bpy ligand in a distorted square-planar geometry as well as a water oxygen atom in the apical position to complete a distorted square-pyramidal coordination geometry. The mononuclear copper molecules are linked by hydrogen bonds between coordinated water molecules and sulfonate groups to form a one-dimensional double-chain structure. The chains are further held together through extensive π-π stacking interactions between the aromatic rings to form a three- dimensional supramolecular structure.
文摘A process for in situ synthesis of terbium complex with salicylic acid by a two-step solgel method in silica matrix has been proposed. The luminescence properties of the silica gelscodoped with terbium and salicylic acid have also been discussed with respect to that of the geldoped with terbium and that of pure terbium complex with salicylic acid.
基金financially supported by the Natural Science Foundation of Jiangsu Province, China (No.BK2011250)the Jiangsu Province Postdoctoral Science Foundation (No. 1101017C)+1 种基金the China Postdoctoral Science Foundation (No. 20100481079)the China Scholarship Council and Outstanding Innovative Talents Support Plan of Hohai University
文摘Fe-based alloy coatings containing TiB2–TiN –(h-BN) were synthesized in situ on Q235 steel substrates by a plasma cladding process using the powders of Fe901 alloy, Ti, and h-BN as raw materials. The effects of Ti/h-BN mass ratio on interfacial bonds between the coating and substrate along with the microstructures and microhardnesses of the coatings were investigated. The results show that the Ti/h-BN mass ratio is a vital factor in the formation of the coatings. Free h-BN can be introduced into the coatings by adding an excess amount of h-BN into the precursor. Decreases in the Ti/h-BN mass ratio improve the microstructural uniformity and compactness and enhance the interfacial bonds of the coatings. At a Ti/h-BN mass ratio of 10/20, the coating is free of cracks and micropores, and mainly consists of Fe-Cr, Fe3B, TiB2, TiN, Ti2N, TiB, FeN, FeB, Fe2B, and h-BN phases. Its average microhardness in the zone between 0.1–2.8 mm from the coating surface is about Hv0.2 551.5.
文摘A novel maskless technique, self-driving micro-fluid porous type printing (SMPTP), was reported to in situ synthesize oligonucleotide arrays on glass slide, which has the merits of low cost, high quality and simple craft. In SMPTP for fabricating gene- chips, porous fiber tubes with a number of nanometric or micron channels functioned as "active letters" and were assembled in designed patterns, which are identical to the distribution of monomers in each layer of the array, and four patterns were needed for each layer. By means of capillarity, the synthesis solution was automatically taken into porous tubes assembled in a printing plate and reached the surface. An oligonucleotide array of 160 features with four different 15-mer probes was in situ synthesized using this technique. The four specific oligonucleotide probes, including the matched and the mismatched by the fluorescent target sequence, gave obviously different hybridization fluorescent signals.
基金Supported by the National Natural Science Foundation of China(21276050 and21406034)the National Basic Research Program of China(2010CB732206)
文摘In situ surface synthesis of Ca–Mg–Al hydrotalcite(HT) on inorganic ceramic membrane(CM) was investigated with urea as precipitator. The effects of molar ratio of raw materials, crystallization time, and temperature on surface synthesis of HT were examined. The as-prepared HT/CM samples were characterized by XRD and SEM and an in situ growth mechanism of HT on CM was proposed. KF/HT/CM obtained by loading potassium fluoride(KF) on the HT layer by impregnation and calcination method was used as catalyst for transesterification between palm oil and methanol. The comparison of KF/HT/CM and pure KF/HT powder under identical reaction conditions shows that the production of fatty acid methyl ester is equivalent, which means that the use of inorganic catalytic membrane in the transesterification is a viable alternative.
文摘Using Al Mg and Al Mg Y alloys as raw materials and nitrogen as gas reactants, AlN powders and composite AlN powders by in situ synthesis method were prepared. AlN lumps prepared by the nitriding of Al Mg and Al Mg Y alloys have porous microstructure, which is favorable for pulverization. They have high purity, containing 1.23%(mass fraction) oxygen impurity, and consisted of AlN single phase. The average particle size of AlN powders is 6.78 μm. Composite AlN powders consist of AlN phases and rare earth oxide Y 2O 3 phase. The distribution of particle size of AlN powders shows two peaks. In view of packing factor, AlN powders with such size distribution can easily be sintered to high density.
基金supported by the National Key Projects of Basic Research and Development Plan(G2000016103)the National Natural Science Foundation of China(39970541)+1 种基金the National Outstanding Youth Science Foundation(3992507)the Doctorate Foundation of the Minister of Education of China(1999004004).
文摘The porcine microsatellite SW943 was regionally localized on 12p11-(2/3p13) by the two methods: the Primed in situ (PRINS) labelling on the pachytene bivalents of pigs using the Dig-11-dUTP as the report molecule and pig X rodent Somatic Cell Hybrid Panel (SCHP) which contains 27 cell lines through PCR amplification. Advantages and disadvantages of the two methods for physical mapping of microsatellites were also discussed.
文摘A novel substrate for in situ synthesis of oligonucleotide was prepared by hydrolyzing microporous polyamide-6 membranes in a 0.01mol/L NaOH/(H2O-CH3OH) mixture medium. The formation of amines (NH2) on the surface was proved by attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR). The treated membrane was applied for in situ synthesis of oligonucleotide and a single step coupling efficiency determined by ultraviolet (UV) spectra was above 98 %.
文摘Polypropylene microporous membranes were treated with plasma in a mixture of N2 and H2 (1:2 in volume). Attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FT1R), X-ray photoelectron spectroscopy (XPS) and ultra-violet (UV) spectra demonstrated the success of grafting amino groups. The density of the polar amino groups on the membrane surface is about 0.59 μmol/cm2. The as-treated membranes were successively applied to the in situ synthesis of oligonucleotides and an average coupling yield was more than 98%. The surface feature of the treated membrane is suggested to be responsible for its advantage over a glass slide.
基金Project (20906067) supported by the National Natural Science Foundation of China
文摘ZSM-5 zeolites were directly synthesized on the surface of honeycomb cordierite substrates by hydrothermal method and certified by XRD and SEM techniques; the adhesion of ZSM-5 coatings was evaluated by ultrasonic vibration. Cu-ZSM-5/cordierite monolithic catalyst was prepared by ion-exchange and impregnation method and applied for the selective catalytic reduction (SCR) of NO by NH3 using a simulated diesel exhaust. The results show that the cordierite surface is almost completely covered by ZSM-5 crystals and the crystallization time greatly impacts the loadings and adhesion of ZSM-5 coatings on substrate, the NOx removal rate over Cu-ZSM-5/cordierite is above 90% in a temperature range of 240-480℃. Moreover, Cu-ZSM-5/cordierite prepared by different methods shows a wide temperature window (240-540 ℃) with high NO removal activities.
基金supported by Shanghai Science and Technology Development Foundation(No.08QA14035)the Special Foundation of Shanghai Education Commission for Nano-Materials Research(No.0852nm01400)the Crucial Project of Shanghai Science and Technology Commission(No.08520513400),China
文摘Titanium-based composite coatings reinforced by in situ synthesized TiB and TiC particles between titanium and B4C were successfully fabricated on Ti6Al4V by laser cladding. Phase constituents of the coatings were predicted by thermodynamic calculations in the Ti-BnC-Al and Ti-B-C-Al systems, respectively, and were validated well by X-ray diffraction (XRD) analysis results. Microstructural and metallographic analyses were made by scanning electron microscopy (SEM) and electron probe micro-analysis (EPMA). The results show that the coatings are mainly composed of α-Ti cellular dendrites and the eutecticum in which a large number of needle-shaped TiB and a few equiaxial TiC particles are embedded. C is enriched in α-Ti cellular dendrites and far exceeds the theoretical maximum dissolubility, owing to the extension of saturation during laser cladding. The coatings have a good metallurgical bond with the substrate due to the existence of the dilution zone, in which a great amount of lamella β-Ti grains consisting of a thin needle-shaped martensitic microstructure are present and grow parallel to the heat flux direction; a few TiB and TiC reinforcements are observed at the boundaries of initial β-Ti grains.
基金the National Natural Science Foundation of China (No. 51002093)the Shanghai Science and Technology Development Foundation, China (No. 08QA14035)the Shanghai Leading Academic Discipline Project, China (No. J51402)
文摘A titanium-based composite coating reinforced by in situ synthesized TiB and TiC particles was fabricated on Ti6A14V by laser cladding. The microstructure and mechanical properties were investigated. The coating was mainly composed of a-Ti cellular dendrites and an eutectic in which a large number of rod/ needle-shaped TiB and a few equiaxial TiC particles were homogeneously embedded. The microstructural evolution could be divided into four stages: precipitation and growth of primary fl-Ti phase, formation of the binary eutectic fl-Ti+TiB, formation of the ternary eutectic fl-Ti+TiB+TiC, and solid transformation from fl-Ti to a-Ti. Microhardness of the coating showed a gradient variation from the surface (about HV0.2 876) to the bottom (about HV0.2 660) and was prominently improved in comparison with that of the substrate. Fracture toughness of the coating also exhibited a gradient variation from the surface (6.3 MPa-m1/2) to the interface (11.9 MPa-mV2). Wear resistance of the coating was significantly superior to that of Ti6A14V.
基金Funded by the National Natural Science Foundation of China (No.50675136 and No.50375096)
文摘The in situ synthesized NbC particles reinforced Ni-based alloy composite coating was produced by laser cladding a precursor mixture of Ni-based alloy powder, graphite and niobium powders on a steel substrate. The microstructure, phase composition and wear property of the composite coating were investigated by means of scanning electron microscopy (SEM), X-ray diffraction (XRD) and dry sliding wear test. The experiment results show that the composite coating is homogeneous and free from cracks, and about 0.8 mm thick. The microstructure of the composite coating is mainly composed of NbC particles, CrB type chromium borides, 7-Ni primary dendrites, and interdendritic eutectics. CrB phases often nucleate and grow on the surface of NbC particles or in their close vicinity. NbC particles are formed via in situ reaction between niobium and graphite in the molten pool during the laser cladding process and they are commonly precipitated in three kinds of morphologies, such as quadrangle, cluster, and flower-like shape. Compared with the pure Ni- based alloy coating, the microhardness of the composite coating is increased about 38%, giving a high average hardness of HV0.21000, and the wear rate of the composite coating is decreased by about 32%, respectively. These are attributed to the presence of in situ synthesized NbC particles and their well distribution in the coating.
文摘A simple and scalable synthetic approach for one-step synthesis of graphene–Cu O(TRGC) nanocomposite by an in situ thermo-annealing method has been developed.Using graphene oxide(GO) and copper hydroxide as a precursors reagent,the reduction of GO and the uniform deposition of in situ formed Cu O nanoparticles on graphene was simultaneously achieved.The method employed no solvents,toxic-reducing agents,or organic modifiers.The resulting nanostructured hybrid exhibited improved H2 S sorption capacity of 1.5 mmol H2S/g-sorbent(3 g S/100 g-sorbent).Due to its highly dispersed sub-20 nm Cu O nanoparticles and large specific surface area,TRGC nanocomposite exhibits tremendous potential for energy and environment applications.
基金the Special Foundation of the Shanghai Education Commission for Out-standing Young Teachers in Universities, China (No. 05XPYQ16) the Leading Academic Discipline Project of the Shanghai Education Commission, China (No. XK0706)
文摘Nickel-based composite coatings reinforced by in situ synthesized TiB2 and WC particles were deposited on stainless steel by laser cladding, and their microstmcture and mechanical properties were investigated. The results show that the coatings are mainly composed of 7-Ni cellular dendrites and dispersed spherical/strip/network shaped TiB2 and equiaxial WC particles. The initial WC particles are dissolved to become fine and mostly dispersed within Y-Ni cellular dendrites. The coating prepared at a special laser energy of 0.225 kJ@mm^-2 is uniform, continuous, and free of pores and cracks. With the decrease in special energy density, TiB2 phase changes from fine spherical particles which cluster together to strip shape with different morphologies and further crystallizes to form network structure, and the dispersion zone also gradually changes from intragranular to intergranular phase. The coating possesses a higher microhardness compared with the substrate, and it has a good metallurgical bond with the substrate and excellent cracking resistance.
基金the financial support of the National Natural Science Foundation of China(No.20573106)the Ministry of Science and Technology of China through the National Key Project of Fundamental Research.
文摘An in situ reduction method has been developed to fabricate metallic Ag nanoparticles inside the channels of mesoporous carbon CMK-3. This approach combines function of the CMK-3 surface by oxidation using HNO3 with the subsequent absorption of Ag^+ The resultant nanocomposite materials were characterized by nitrogen adsorption, X-ray diffraction, Auger electron spectroscopy and transmission electron microscopy. Compared with the conventional impregnation method, our approach shows that Ag nanonarticles of 2-4 nm can be uniformlv incorporated into CMK-3.