A real extended scene and moving targets multi-channel Synthetic Aperture Radar(SAR) raw signal simulator accounting for Inertial Navigation System(INS) errors and antenna patterns is presented in this paper. INS erro...A real extended scene and moving targets multi-channel Synthetic Aperture Radar(SAR) raw signal simulator accounting for Inertial Navigation System(INS) errors and antenna patterns is presented in this paper. INS errors are obtained by solving INS error differential equations with Runge-Kutta method. A high resolution SAR image is used to estimate the complex reflectance of real extended scene. Extended scene and moving target are simulated separately and then are superposed in time domain. The simulated multi-channel SAR data can be used for development of multi-channel SAR Ground Moving Target Indication(SAR-GMTI) and also can be used for development of SAR motion compensation.展开更多
Estimating cross-range velocity is a challenging task for space-borne synthetic aperture radar(SAR), which is important for ground moving target indication(GMTI). Because the velocity of a target is very small com...Estimating cross-range velocity is a challenging task for space-borne synthetic aperture radar(SAR), which is important for ground moving target indication(GMTI). Because the velocity of a target is very small compared with that of the satellite, it is difficult to correctly estimate it using a conventional monostatic platform algorithm. To overcome this problem, a novel method employing multistatic SAR is presented in this letter. The proposed hybrid method, which is based on an extended space-time model(ESTIM) of the azimuth signal, has two steps: first, a set of finite impulse response(FIR) filter banks based on a fractional Fourier transform(FrFT) is used to separate multiple targets within a range gate; second, a cross-correlation spectrum weighted subspace fitting(CSWSF) algorithm is applied to each of the separated signals in order to estimate their respective parameters. As verified through computer simulation with the constellations of Cartwheel, Pendulum and Helix, this proposed time-frequency-subspace method effectively improves the estimation precision of the cross-range velocities of multiple targets.展开更多
文摘A real extended scene and moving targets multi-channel Synthetic Aperture Radar(SAR) raw signal simulator accounting for Inertial Navigation System(INS) errors and antenna patterns is presented in this paper. INS errors are obtained by solving INS error differential equations with Runge-Kutta method. A high resolution SAR image is used to estimate the complex reflectance of real extended scene. Extended scene and moving target are simulated separately and then are superposed in time domain. The simulated multi-channel SAR data can be used for development of multi-channel SAR Ground Moving Target Indication(SAR-GMTI) and also can be used for development of SAR motion compensation.
基金supported by the National Natural Science Foundation of China (No. 61271343)the Research Fund for the Doctoral Program of Higher Education of China (No. 20122302110012)the 2014 Innovation of Science and Technology Program of China Aerospace Science and Technology Corporation
文摘Estimating cross-range velocity is a challenging task for space-borne synthetic aperture radar(SAR), which is important for ground moving target indication(GMTI). Because the velocity of a target is very small compared with that of the satellite, it is difficult to correctly estimate it using a conventional monostatic platform algorithm. To overcome this problem, a novel method employing multistatic SAR is presented in this letter. The proposed hybrid method, which is based on an extended space-time model(ESTIM) of the azimuth signal, has two steps: first, a set of finite impulse response(FIR) filter banks based on a fractional Fourier transform(FrFT) is used to separate multiple targets within a range gate; second, a cross-correlation spectrum weighted subspace fitting(CSWSF) algorithm is applied to each of the separated signals in order to estimate their respective parameters. As verified through computer simulation with the constellations of Cartwheel, Pendulum and Helix, this proposed time-frequency-subspace method effectively improves the estimation precision of the cross-range velocities of multiple targets.