期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Anthradithiophene based hole-transport material for efficient and stable perovskite solar cells
1
作者 Guohua Wu Yaohong Zhang +5 位作者 Ryuji Kaneko Yoshiyuki Kojima Ashraful Islam Kosuke Sugawa Joe Otsuki Shengzhong Liu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第9期293-298,I0009,共7页
A novel hole-transport material(HTM)based on an anthradithiophene central bridge named BTPA-7 is developed.In comparison to spiro-OMeTAD(2,2’,7,7’-tetrakis-(N,N-di-p-methoxyphenylamine)-9,9’-spirobifluorene),the sy... A novel hole-transport material(HTM)based on an anthradithiophene central bridge named BTPA-7 is developed.In comparison to spiro-OMeTAD(2,2’,7,7’-tetrakis-(N,N-di-p-methoxyphenylamine)-9,9’-spirobifluorene),the synthetic steps of BTPA-7 are greatly reduced from 6 to 3 and the synthetic cost of BTPA-7 is nearly a half that of spiro-OMeTAD.Moreover,BTPA-7 exhibits a relatively lower conductivity but higher hole mobility and higher glass transition temperature(Tg)than spiro-OMeTAD.Compared with the photovolatic performance for spiro-OMeTAD,FA0.85MA0.15PbI3 and MAPbI3 PSC devices based on BTPA-7 exhibit slightly lower PCEs with the values of 17.58%(18.88%for spiro-OMeTAD)and 11.90%(13.25%for spiro-OMeTAD),respectively.Nevertheless,a dramatically higher JSC of PSC based on BTPA-7is achieved,which arises from the higher hole mobility of BTPA-7.In addition,the relatively hydrophobic character of BTPA-7 eventually enhances the PSC device stability.Lower cost,higher hole mobility,higher Tg,satisfactory photovoltaic performance,and superior device stability of BTPA-7 can be utilized as a substitute for spiro-OMeTAD in PSCs. 展开更多
关键词 Anthradithiophene Hole-transport material STABILITY synthetic cost
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部