Diesel from direct coal liquefaction(DDCL) is a new type of engine alternative energy. But its hydrocarbon composition and physicochemical properties are quite different from those of Petro diesel. In this study, a pr...Diesel from direct coal liquefaction(DDCL) is a new type of engine alternative energy. But its hydrocarbon composition and physicochemical properties are quite different from those of Petro diesel. In this study, a premixed constant volume combustion chamber(CVCC) system with soot particle sampling devices was built. The soot particles in the spray flame were sampled and photographed by thermophoresis probe and transmission electron microscope(TEM). An automatic processing code based on Matlab software was developed to process the TEM images and extract the micro morphology parameters of the soot particles. This study has systematically studied the effects of sampling location, injection pressure, ambient density and oxygen concentration on the micro morphology of soot particles. The ambient density refers to the initial gas density in the CVCC. The results showed that various morphologies and sizes of soot particles coexisted in the upstream of the spray flame. During the evolution of soot particles from upstream to downstream in the flame, the size of soot aggregates gradually decreased, while the maturity of soot aggregates increased. With the increase of injection pressure, ambient density and oxygen concentration, the average sizes of soot aggregates and primary soot particles decreased, but the fractal dimensions of soot aggregates increased gradually. Under the same combustion condition and in-flame sampling location, the average projection area, gyration radius and primary soot diameter of soot aggregates produced by DDCL were significantly lower than those of Petro diesel. The structure of soot particles from DDCL was more compact than that of Petro diesel.展开更多
在一台增压柴油机上通过试验方法研究了废气再循环(exhaust gas recirculation,EGR)对煤直接液化柴油(diesel from direct coal liquefaction,DDCL)和普通石化柴油的燃烧及排放的影响。试验结果表明:DDCL着火滞燃期比柴油长,燃烧持续期...在一台增压柴油机上通过试验方法研究了废气再循环(exhaust gas recirculation,EGR)对煤直接液化柴油(diesel from direct coal liquefaction,DDCL)和普通石化柴油的燃烧及排放的影响。试验结果表明:DDCL着火滞燃期比柴油长,燃烧持续期比柴油短,这种差别在40%EGR率下更明显;相同策略下DDCL燃烧对应的最大压升率高于柴油;当进气氧浓度低于19%后DDCL燃烧产生的NOx排放浓度低于柴油;不论采用何种控制策略,DDCL燃烧产生的碳烟排放浓度总低于柴油,产生的CO和HC排放浓度总高于柴油;柴油机分别燃用DDCL与柴油的油耗率很接近,随着EGR率的增加,DDCL的燃油经济性逐渐差于柴油。展开更多
基金supported by the National Key Research and Development Program of China(Grant No.2017YFE0130800)National Natural Science Foundation of China(Grant No.91741122)。
文摘Diesel from direct coal liquefaction(DDCL) is a new type of engine alternative energy. But its hydrocarbon composition and physicochemical properties are quite different from those of Petro diesel. In this study, a premixed constant volume combustion chamber(CVCC) system with soot particle sampling devices was built. The soot particles in the spray flame were sampled and photographed by thermophoresis probe and transmission electron microscope(TEM). An automatic processing code based on Matlab software was developed to process the TEM images and extract the micro morphology parameters of the soot particles. This study has systematically studied the effects of sampling location, injection pressure, ambient density and oxygen concentration on the micro morphology of soot particles. The ambient density refers to the initial gas density in the CVCC. The results showed that various morphologies and sizes of soot particles coexisted in the upstream of the spray flame. During the evolution of soot particles from upstream to downstream in the flame, the size of soot aggregates gradually decreased, while the maturity of soot aggregates increased. With the increase of injection pressure, ambient density and oxygen concentration, the average sizes of soot aggregates and primary soot particles decreased, but the fractal dimensions of soot aggregates increased gradually. Under the same combustion condition and in-flame sampling location, the average projection area, gyration radius and primary soot diameter of soot aggregates produced by DDCL were significantly lower than those of Petro diesel. The structure of soot particles from DDCL was more compact than that of Petro diesel.
文摘在一台增压柴油机上通过试验方法研究了废气再循环(exhaust gas recirculation,EGR)对煤直接液化柴油(diesel from direct coal liquefaction,DDCL)和普通石化柴油的燃烧及排放的影响。试验结果表明:DDCL着火滞燃期比柴油长,燃烧持续期比柴油短,这种差别在40%EGR率下更明显;相同策略下DDCL燃烧对应的最大压升率高于柴油;当进气氧浓度低于19%后DDCL燃烧产生的NOx排放浓度低于柴油;不论采用何种控制策略,DDCL燃烧产生的碳烟排放浓度总低于柴油,产生的CO和HC排放浓度总高于柴油;柴油机分别燃用DDCL与柴油的油耗率很接近,随着EGR率的增加,DDCL的燃油经济性逐渐差于柴油。