Rapid and accurate acquisition of soil organic matter(SOM)information in cultivated land is important for sustainable agricultural development and carbon balance management.This study proposed a novel approach to pred...Rapid and accurate acquisition of soil organic matter(SOM)information in cultivated land is important for sustainable agricultural development and carbon balance management.This study proposed a novel approach to predict SOM with high accuracy using multiyear synthetic remote sensing variables on a monthly scale.We obtained 12 monthly synthetic Sentinel-2 images covering the study area from 2016 to 2021 through the Google Earth Engine(GEE)platform,and reflectance bands and vegetation indices were extracted from these composite images.Then the random forest(RF),support vector machine(SVM)and gradient boosting regression tree(GBRT)models were tested to investigate the difference in SOM prediction accuracy under different combinations of monthly synthetic variables.Results showed that firstly,all monthly synthetic spectral bands of Sentinel-2 showed a significant correlation with SOM(P<0.05)for the months of January,March,April,October,and November.Secondly,in terms of single-monthly composite variables,the prediction accuracy was relatively poor,with the highest R^(2)value of 0.36 being observed in January.When monthly synthetic environmental variables were grouped in accordance with the four quarters of the year,the first quarter and the fourth quarter showed good performance,and any combination of three quarters was similar in estimation accuracy.The overall best performance was observed when all monthly synthetic variables were incorporated into the models.Thirdly,among the three models compared,the RF model was consistently more accurate than the SVM and GBRT models,achieving an R^(2)value of 0.56.Except for band 12 in December,the importance of the remaining bands did not exhibit significant differences.This research offers a new attempt to map SOM with high accuracy and fine spatial resolution based on monthly synthetic Sentinel-2 images.展开更多
High resolution imaging is achieved using increasingly larger apertures and successively shorter wavelengths.Optical aperture synthesis is an important high-resolution imaging technology used in astronomy.Conventional...High resolution imaging is achieved using increasingly larger apertures and successively shorter wavelengths.Optical aperture synthesis is an important high-resolution imaging technology used in astronomy.Conventional long baseline amplitude interferometry is susceptible to uncontrollable phase fluctuations,and the technical difficulty increases rapidly as the wavelength decreases.The intensity interferometry inspired by HBT experiment is essentially insensitive to phase fluctuations,but suffers from a narrow spectral bandwidth which results in a lack of effective photons.In this study,we propose optical synthetic aperture imaging based on spatial intensity interferometry.This not only realizes diffraction-limited optical aperture synthesis in a single shot,but also enables imaging with a wide spectral bandwidth,which greatly improves the optical energy efficiency of intensity interferometry.And this method is insensitive to the optical path difference between the sub-apertures.Simulations and experiments present optical aperture synthesis diffraction-limited imaging through spatial intensity interferometry in a 100 nm spectral width of visible light,whose maximum optical path difference between the sub-apertures reaches 69λ.This technique is expected to provide a solution for optical aperture synthesis over kilometer-long baselines at optical wavelengths.展开更多
Automatically detecting Ulva prolifera(U.prolifera)in rainy and cloudy weather using remote sensing imagery has been a long-standing problem.Here,we address this challenge by combining high-resolution Synthetic Apertu...Automatically detecting Ulva prolifera(U.prolifera)in rainy and cloudy weather using remote sensing imagery has been a long-standing problem.Here,we address this challenge by combining high-resolution Synthetic Aperture Radar(SAR)imagery with the machine learning,and detect the U.prolifera of the South Yellow Sea of China(SYS)in 2021.The findings indicate that the Random Forest model can accurately and robustly detect U.prolifera,even in the presence of complex ocean backgrounds and speckle noise.Visual inspection confirmed that the method successfully identified the majority of pixels containing U.prolifera without misidentify-ing noise pixels or seawater pixels as U.prolifera.Additionally,the method demonstrated consistent performance across different im-ages,with an average Area Under Curve(AUC)of 0.930(+0.028).The analysis yielded an overall accuracy of over 96%,with an aver-age Kappa coefficient of 0.941(+0.038).Compared to the traditional thresholding method,Random Forest model has a lower estima-tion error of 14.81%.Practical application indicates that this method can be used in the detection of unprecedented U.prolifera in 2021 to derive continuous spatiotemporal changes.This study provides a potential new method to detect U.prolifera and enhances our under-standing of macroalgal outbreaks in the marine environment.展开更多
For ballistic mid-course targets,in addition to constant orbital motion,the target or any structure on the target undergoes micro-motion dynamics,such as spin,precession and tumbling.The micro-motion characteristics o...For ballistic mid-course targets,in addition to constant orbital motion,the target or any structure on the target undergoes micro-motion dynamics,such as spin,precession and tumbling.The micro-motion characteristics of the ballistic mid-course targets were discussed.The target motion model and inverse synthetic aperture radar(ISAR) imaging model for this kind of targets were built.Then,the influence of micro-motion on ISAR imaging based on the established imaging model was presented.The computer simulation to get mid-course target echoes from static darkroom electromagnetic scattering data based on the established target motion model was realized.The imaging results of computer simulation show the validity of ISAR imaging analysis for micro-motion targets.展开更多
Not confined to a certain point,such as waveform,this paper systematically studies the low-intercept radio frequency(RF)stealth design of synthetic aperture radar(SAR)from the system level.The study is carried out fro...Not confined to a certain point,such as waveform,this paper systematically studies the low-intercept radio frequency(RF)stealth design of synthetic aperture radar(SAR)from the system level.The study is carried out from two levels.In the first level,the maximum low-intercept range equation of the conventional SAR system is deduced firstly,and then the maximum low-intercept range equation of the multiple-input multiple-output SAR system is deduced.In the second level,the waveform design and imaging method of the low-intercept RF SAR system are given and verified by simulation.Finally,the main technical characteristics of the lowintercept RF stealth SAR system are given to guide the design of low-intercept RF stealth SAR system.展开更多
A method and procedure is presented to reconstruct three-dimensional(3D) positions of scattering centers from multiple synthetic aperture radar(SAR) images. Firstly, two-dimensional(2D) attribute scattering centers of...A method and procedure is presented to reconstruct three-dimensional(3D) positions of scattering centers from multiple synthetic aperture radar(SAR) images. Firstly, two-dimensional(2D) attribute scattering centers of targets are extracted from 2D SAR images. Secondly, similarity measure is developed based on 2D attributed scatter centers' location, type, and radargrammetry principle between multiple SAR images. By this similarity, we can associate 2D scatter centers and then obtain candidate 3D scattering centers. Thirdly, these candidate scattering centers are clustered in 3D space to reconstruct final 3D positions. Compared with presented methods, the proposed method has a capability of describing distributed scattering center, reduces false and missing 3D scattering centers, and has fewer restrictionson modeling data. Finally, results of experiments have demonstrated the effectiveness of the proposed method.展开更多
There is difficulty for distinguishing of river and shadow in Synthetic Aperture Radar (SAR) images. A method of river segmentation in SAR images based on wavelet energy and gradient is proposed in this paper. It main...There is difficulty for distinguishing of river and shadow in Synthetic Aperture Radar (SAR) images. A method of river segmentation in SAR images based on wavelet energy and gradient is proposed in this paper. It mainly includes two algorithms: coarse segmentation and refined segmen- tation. Firstly, The river regions are coarsely segmented by the wavelet energy feature,and then refined segmented accurately by the gradient threshold which is got adaptively. The experimental results show the validity of the method, which provides a good foundation for targets detection above the river.展开更多
Building segmentation from high-resolution synthetic aperture radar (SAR) images has always been one of the important research issues. Due to the existence of speckle noise and multipath effect, the pixel values chang...Building segmentation from high-resolution synthetic aperture radar (SAR) images has always been one of the important research issues. Due to the existence of speckle noise and multipath effect, the pixel values change drastically, causing the large intensity differences in pixels of building areas. Moreover, the geometric structure of buildings can cause strong scattering spots, which brings difficulties to the segmentation and extraction of buildings. To solve of these problems, this paper presents a coherence-coefficient-based Markov random field (CCMRF) approach for building segmentation from high-resolution SAR images. The method introduces the coherence coefficient of interferometric synthetic aperture radar (InSAR) into the neighborhood energy based on traditional Markov random field (MRF), which makes interferometric and spatial contextual information more fully used in SAR image segmentation. According to the Hammersley-Clifford theorem, the problem of maximum a posteriori (MAP) for image segmentation is transformed into the solution of minimizing the sum of likelihood energy and neighborhood energy. Finally, the iterative condition model (ICM) is used to find the optimal solution. The experimental results demonstrate that the proposed method can segment SAR building effectively and obtain more accurate results than the traditional MRF method and K-means clustering.展开更多
Oil spills pose a major threat to ocean ecosystems and their health. Synthetic aperture radar(SAR) sensors can detect oil spills on the sea surface. These oil spills appear as dark spots in SAR images. However, dark...Oil spills pose a major threat to ocean ecosystems and their health. Synthetic aperture radar(SAR) sensors can detect oil spills on the sea surface. These oil spills appear as dark spots in SAR images. However, dark formations can be caused by a number of phenomena. It is aimed to distinguishing oil spills or look-alike objects. A novel method based on a bidimensional empirical mode decomposition is proposed. The selected dark formations are first decomposed into several bidimensional intrinsic mode functions and the residue. Subsequently, 64 dimension feature sets are calculated using the Hilbert spectral analysis and five new features are extracted with a relief algorithm. Mahalanobis distances are then used for classification. Three data sets containing oil spills or look-alikes are used to test the accuracy rate of the method. The accuracy rate is more than 90%. The experimental results demonstrate that the novel method can detect oil spills validly and accurately.展开更多
The scattering points in a plasma sheath characterized with coupled velocities can cause pulse compression mismatching,which results in displacement and energy diffusion in the onedimension range profile.To solve this...The scattering points in a plasma sheath characterized with coupled velocities can cause pulse compression mismatching,which results in displacement and energy diffusion in the onedimension range profile.To solve this problem,we deduce the echo model of the plasma-sheathenveloped reentry object.By estimating the coupled velocities,we propose a compensation method to correct the defocus of an inverse synthetic aperture radar(ISAR)image in range dimension to improve the quality of the ISAR images.The simulation results suggest that the echoes from different regions of the surface of the reentry object have various coupling velocities,and the higher the coupled velocity,the more serious the displacement and energy diffusion in the range dimension.Our proposed method can correct the range dimension aberration.Two measurement metrics were used to evaluate the improvement of the compensation method.展开更多
Target modeling and scattering function calculating are important prerequisites and groundwork for the synthetic aperture radar(SAR) imaging simulation.According to the difficult problems that normal methods cannot ...Target modeling and scattering function calculating are important prerequisites and groundwork for the synthetic aperture radar(SAR) imaging simulation.According to the difficult problems that normal methods cannot calculate the scattering function of electrically large object under the condition to wideband,an effective method of improved equivalent edge currents is presented and applied to SAR imaging simulation for the first time.This method improves calculating velocity and has relatively high precision.The concrete steps of applying the method are given.By way of the simulation experiment,the effectiveness of the method is verified.展开更多
The paper presents an algorithm of automatic target detection in Synthetic Aperture Radar(SAR) images based on Maximum A Posteriori(MAP). The algorithm is divided into three steps. First, it employs Gaussian mixture d...The paper presents an algorithm of automatic target detection in Synthetic Aperture Radar(SAR) images based on Maximum A Posteriori(MAP). The algorithm is divided into three steps. First, it employs Gaussian mixture distribution to approximate and estimate multi-modal histogram of SAR image. Then, based on the principle of MAP, when a priori probability is both unknown and learned respectively, the sample pixels are classified into different classes c = {target,shadow, background}. Last, it compares the results of two different target detections. Simulation results preferably indicate that the presented algorithm is fast and robust, with the learned a priori probability, an approach to target detection is reliable and promising.展开更多
Mapping soil organic matter(SOM)content has become an important application of digital soil mapping.In this study,we processed all Sentinel-2 images covering the bare-soil period(March to June)in Northeast China from ...Mapping soil organic matter(SOM)content has become an important application of digital soil mapping.In this study,we processed all Sentinel-2 images covering the bare-soil period(March to June)in Northeast China from 2019 to 2022 and integrated the observation results into synthetic materials with four defined time intervals(10,15,20,and 30 d).Then,we used synthetic images corresponding to different time periods to conduct SOM mapping and determine the optimal time interval and time period beforefinally assessing the impacts of adding environmental covariates.The results showed the following:(1)in SOM mapping,the highest accuracy was obtained using day-of-year(DOY)120 to 140 synthetic images with 20 d time intervals,as well as with different time intervals,ranked as follows:20 d>30 d>15 d>10 d;(2)when using synthetic images at different time intervals to predict SOM,the best time period for predicting SOM was always within May;and(3)adding environmental covariates effectively improved the SOM mapping performance,and the multiyear average temperature was the most important factor.In general,our results demonstrated the valuable potential of SOM mapping using multiyear synthetic imagery,thereby allowing detailed mapping of large areas of cultivated soil.展开更多
The conventional two dimensional(2D)inverse synthetic aperture radar(ISAR)imaging fails to provide the targets'three dimensional(3D)information.In this paper,a 3D ISAR imaging method for the space target is propos...The conventional two dimensional(2D)inverse synthetic aperture radar(ISAR)imaging fails to provide the targets'three dimensional(3D)information.In this paper,a 3D ISAR imaging method for the space target is proposed based on mutliorbit observation data and an improved orthogonal matching pursuit(OMP)algorithm.Firstly,the 3D scattered field data is converted into a set of 2D matrix by stacking slices of the 3D data along the elevation direction dimension.Then,an improved OMP algorithm is applied to recover the space target's amplitude information via the 2D matrix data.Finally,scattering centers can be reconstructed with specific three dimensional locations.Numerical simulations are provided to demonstrate the effectiveness and superiority of the proposed 3D imaging method.展开更多
Change detection(CD)is becoming indispensable for unmanned aerial vehicles(UAVs),especially in the domain of water landing,rescue and search.However,even the most advanced models require large amounts of data for mode...Change detection(CD)is becoming indispensable for unmanned aerial vehicles(UAVs),especially in the domain of water landing,rescue and search.However,even the most advanced models require large amounts of data for model training and testing.Therefore,sufficient labeled images with different imaging conditions are needed.Inspired by computer graphics,we present a cloning method to simulate inland-water scene and collect an auto-labeled simulated dataset.The simulated dataset consists of six challenges to test the effects of dynamic background,weather,and noise on change detection models.Then,we propose an image translation framework that translates simulated images to synthetic images.This framework uses shared parameters(encoder and generator)and 22×22 receptive fields(discriminator)to generate realistic synthetic images as model training sets.The experimental results indicate that:1)different imaging challenges affect the performance of change detection models;2)compared with simulated images,synthetic images can effectively improve the accuracy of supervised models.展开更多
The convergence performance of the minimum entropy auto-focusing(MEA) algorithm for inverse synthetic aperture radar(ISAR) imaging is analyzed by simulation. The results show that a local optimal solution problem ...The convergence performance of the minimum entropy auto-focusing(MEA) algorithm for inverse synthetic aperture radar(ISAR) imaging is analyzed by simulation. The results show that a local optimal solution problem exists in the MEA algorithm. The cost function of the MEA algorithm is not a downward-convex function of multidimensional phases to be compensated. Only when the initial values of the compensated phases are chosen to be near the global minimal point of the entropy function, the MEA algorithm can converge to a global optimal solution. To study the optimal solution problem of the MEA algorithm, a new scheme of entropy function optimization for radar imaging is presented. First, the initial values of the compensated phases are estimated by using the modified Doppler centroid tracking (DCT)algorithm. Since these values are obtained according to the maximum likelihood (ML) principle, the initial phases can be located near the optimal solution values. Then, a fast MEA algorithm is used for the local searching process and the global optimal solution can be obtained. The simulation results show that this scheme can realize the global optimization of the MEA algorithm and can avoid the selection and adjustment of parameters such as iteration step lengths, threshold values, etc.展开更多
Wavelet-fractal based SAR (synthetic aperture radar) image processing is one of the advanced technologies in image processing. The main concept of analysis is that after wavelet transformation, multifractal spectrum...Wavelet-fractal based SAR (synthetic aperture radar) image processing is one of the advanced technologies in image processing. The main concept of analysis is that after wavelet transformation, multifractal spectrum of the signal is different from that of noise. This difference is used to alleviate the noise produced by SAR image.The method to denoise SAR image using the process based on wavelet-fractai analysis is discussed in detail. Essentially, the present method focuses on adjusting the Hoelder exponent α of multifractal spectrum. After simulation, α should be adjusted to 1.72-1.73. The more the value of α exceeds 1.73, the less distinctive the edges of SAR image become. According to the authors denoising is optimal at α=1.72-1.73. In other words, when α =1.72-1.73, a smooth and denoised SAR image is produced.展开更多
To cope with the problems that edge detection operators are liable to make the detected edges too blurry for synthetic aperture radar(SAR)images,an edge detection method for detecting river in SAR images is proposed b...To cope with the problems that edge detection operators are liable to make the detected edges too blurry for synthetic aperture radar(SAR)images,an edge detection method for detecting river in SAR images is proposed based on contourlet modulus maxima and improved mathematical morphology.The SAR image is firstly transformed to a contourlet domain.According to the directional information and gradient information of directional subband of contourlet transform,the modulus maximum and the improved mathematical morphology are used to detect high frequency and low frequency sub-image edges,respectively.Subsequently,the edges of river in SAR image are obtained after fusing the high frequency sub-image and the low frequency sub-image.Experimental results demonstrate that the proposed edge detection method can obtain more accurate edge location and reduce false edges,compared with the Canny method,the method based on wavelet and Canny,the method based on contourlet modulus maxima,and the method based on improved(ROEWA).The obtained river edges are complete and clear.展开更多
As the signal bandwidth and the number of channels increase, the synthetic aperture radar (SAR) imaging system produces huge amount of data according to the Shannon-Nyquist theorem, causing a huge burden for data tr...As the signal bandwidth and the number of channels increase, the synthetic aperture radar (SAR) imaging system produces huge amount of data according to the Shannon-Nyquist theorem, causing a huge burden for data transmission. This paper concerns the coprime sampl which are proposed recently but ng and nested sparse sampling, have never been applied to real world for target detection, and proposes a novel way which utilizes these new sub-Nyquist sampling structures for SAR sampling in azimuth and reconstructs the data of SAR sampling by compressive sensing (CS). Both the simulated and real data are processed to test the algorithm, and the results indicate the way which combines these new undersampling structures and CS is able to achieve the SAR imaging effectively with much less data than regularly ways required. Finally, the influence of a little sampling jitter to SAR imaging is analyzed by theoretical analysis and experimental analysis, and then it concludes a little sampling jitter have no effect on image quality of SAR.展开更多
A novel synthetic aperture radar(SAR)image de-noising method based on the local pixel grouping(LPG)principal component analysis(PCA)and guided filter is proposed.This method contains two steps.In the first step,we pro...A novel synthetic aperture radar(SAR)image de-noising method based on the local pixel grouping(LPG)principal component analysis(PCA)and guided filter is proposed.This method contains two steps.In the first step,we process the noisy image by coarse filters,which can suppress the speckle effectively.The original SAR image is transformed into the additive noise model by logarithmic transform with deviation correction.Then,we use the pixel and its nearest neighbors as a vector to select training samples from the local window by LPG based on the block similar matching.The LPG method ensures that only the similar sample patches are used in the local statistical calculation of PCA transform estimation,so that the local features of the image can be well preserved after coefficients shrinkage in the PCA domain.In the second step,we do the guided filtering which can effectively eliminate small artifacts left over from the coarse filtering.Experimental results of simulated and real SAR images show that the proposed method outstrips the state-of-the-art image de-noising methods in the peak signalto-noise ratio(PSNR),the structural similarity(SSIM)index and the equivalent number of looks(ENLs),and is of perceived image quality.展开更多
基金National Key Research and Development Program of China(2022YFB3903302 and 2021YFC1809104)。
文摘Rapid and accurate acquisition of soil organic matter(SOM)information in cultivated land is important for sustainable agricultural development and carbon balance management.This study proposed a novel approach to predict SOM with high accuracy using multiyear synthetic remote sensing variables on a monthly scale.We obtained 12 monthly synthetic Sentinel-2 images covering the study area from 2016 to 2021 through the Google Earth Engine(GEE)platform,and reflectance bands and vegetation indices were extracted from these composite images.Then the random forest(RF),support vector machine(SVM)and gradient boosting regression tree(GBRT)models were tested to investigate the difference in SOM prediction accuracy under different combinations of monthly synthetic variables.Results showed that firstly,all monthly synthetic spectral bands of Sentinel-2 showed a significant correlation with SOM(P<0.05)for the months of January,March,April,October,and November.Secondly,in terms of single-monthly composite variables,the prediction accuracy was relatively poor,with the highest R^(2)value of 0.36 being observed in January.When monthly synthetic environmental variables were grouped in accordance with the four quarters of the year,the first quarter and the fourth quarter showed good performance,and any combination of three quarters was similar in estimation accuracy.The overall best performance was observed when all monthly synthetic variables were incorporated into the models.Thirdly,among the three models compared,the RF model was consistently more accurate than the SVM and GBRT models,achieving an R^(2)value of 0.56.Except for band 12 in December,the importance of the remaining bands did not exhibit significant differences.This research offers a new attempt to map SOM with high accuracy and fine spatial resolution based on monthly synthetic Sentinel-2 images.
基金supported by National Natural Foundation of China(Grant No.61991454)the project of CAS Interdisciplinary Innovation Team。
文摘High resolution imaging is achieved using increasingly larger apertures and successively shorter wavelengths.Optical aperture synthesis is an important high-resolution imaging technology used in astronomy.Conventional long baseline amplitude interferometry is susceptible to uncontrollable phase fluctuations,and the technical difficulty increases rapidly as the wavelength decreases.The intensity interferometry inspired by HBT experiment is essentially insensitive to phase fluctuations,but suffers from a narrow spectral bandwidth which results in a lack of effective photons.In this study,we propose optical synthetic aperture imaging based on spatial intensity interferometry.This not only realizes diffraction-limited optical aperture synthesis in a single shot,but also enables imaging with a wide spectral bandwidth,which greatly improves the optical energy efficiency of intensity interferometry.And this method is insensitive to the optical path difference between the sub-apertures.Simulations and experiments present optical aperture synthesis diffraction-limited imaging through spatial intensity interferometry in a 100 nm spectral width of visible light,whose maximum optical path difference between the sub-apertures reaches 69λ.This technique is expected to provide a solution for optical aperture synthesis over kilometer-long baselines at optical wavelengths.
基金Under the auspices of National Natural Science Foundation of China(No.42071385)National Science and Technology Major Project of High Resolution Earth Observation System(No.79-Y50-G18-9001-22/23)。
文摘Automatically detecting Ulva prolifera(U.prolifera)in rainy and cloudy weather using remote sensing imagery has been a long-standing problem.Here,we address this challenge by combining high-resolution Synthetic Aperture Radar(SAR)imagery with the machine learning,and detect the U.prolifera of the South Yellow Sea of China(SYS)in 2021.The findings indicate that the Random Forest model can accurately and robustly detect U.prolifera,even in the presence of complex ocean backgrounds and speckle noise.Visual inspection confirmed that the method successfully identified the majority of pixels containing U.prolifera without misidentify-ing noise pixels or seawater pixels as U.prolifera.Additionally,the method demonstrated consistent performance across different im-ages,with an average Area Under Curve(AUC)of 0.930(+0.028).The analysis yielded an overall accuracy of over 96%,with an aver-age Kappa coefficient of 0.941(+0.038).Compared to the traditional thresholding method,Random Forest model has a lower estima-tion error of 14.81%.Practical application indicates that this method can be used in the detection of unprecedented U.prolifera in 2021 to derive continuous spatiotemporal changes.This study provides a potential new method to detect U.prolifera and enhances our under-standing of macroalgal outbreaks in the marine environment.
基金Project(61360020102) supported by the National Basic Research Development Program of China
文摘For ballistic mid-course targets,in addition to constant orbital motion,the target or any structure on the target undergoes micro-motion dynamics,such as spin,precession and tumbling.The micro-motion characteristics of the ballistic mid-course targets were discussed.The target motion model and inverse synthetic aperture radar(ISAR) imaging model for this kind of targets were built.Then,the influence of micro-motion on ISAR imaging based on the established imaging model was presented.The computer simulation to get mid-course target echoes from static darkroom electromagnetic scattering data based on the established target motion model was realized.The imaging results of computer simulation show the validity of ISAR imaging analysis for micro-motion targets.
基金supported by the National Key R&D Program of China(2017YFC1405600)the Fundamental Research Funds for the Central Universities(JB180213)
文摘Not confined to a certain point,such as waveform,this paper systematically studies the low-intercept radio frequency(RF)stealth design of synthetic aperture radar(SAR)from the system level.The study is carried out from two levels.In the first level,the maximum low-intercept range equation of the conventional SAR system is deduced firstly,and then the maximum low-intercept range equation of the multiple-input multiple-output SAR system is deduced.In the second level,the waveform design and imaging method of the low-intercept RF SAR system are given and verified by simulation.Finally,the main technical characteristics of the lowintercept RF stealth SAR system are given to guide the design of low-intercept RF stealth SAR system.
文摘A method and procedure is presented to reconstruct three-dimensional(3D) positions of scattering centers from multiple synthetic aperture radar(SAR) images. Firstly, two-dimensional(2D) attribute scattering centers of targets are extracted from 2D SAR images. Secondly, similarity measure is developed based on 2D attributed scatter centers' location, type, and radargrammetry principle between multiple SAR images. By this similarity, we can associate 2D scatter centers and then obtain candidate 3D scattering centers. Thirdly, these candidate scattering centers are clustered in 3D space to reconstruct final 3D positions. Compared with presented methods, the proposed method has a capability of describing distributed scattering center, reduces false and missing 3D scattering centers, and has fewer restrictionson modeling data. Finally, results of experiments have demonstrated the effectiveness of the proposed method.
基金Support by the National Natural Science Foundation of China (NSFC) (No.60472072)the Specialized Research Foundation for the Doctoral Program of Higher Education (No.20040699034)+1 种基金the Aeronautical Science Foundation of China (No.05I53076)the Yellow River Conser-vancy Commission (YRCC) Research on ecological im-provement of the Yellow River (No.2004SZ01-04)
文摘There is difficulty for distinguishing of river and shadow in Synthetic Aperture Radar (SAR) images. A method of river segmentation in SAR images based on wavelet energy and gradient is proposed in this paper. It mainly includes two algorithms: coarse segmentation and refined segmen- tation. Firstly, The river regions are coarsely segmented by the wavelet energy feature,and then refined segmented accurately by the gradient threshold which is got adaptively. The experimental results show the validity of the method, which provides a good foundation for targets detection above the river.
文摘Building segmentation from high-resolution synthetic aperture radar (SAR) images has always been one of the important research issues. Due to the existence of speckle noise and multipath effect, the pixel values change drastically, causing the large intensity differences in pixels of building areas. Moreover, the geometric structure of buildings can cause strong scattering spots, which brings difficulties to the segmentation and extraction of buildings. To solve of these problems, this paper presents a coherence-coefficient-based Markov random field (CCMRF) approach for building segmentation from high-resolution SAR images. The method introduces the coherence coefficient of interferometric synthetic aperture radar (InSAR) into the neighborhood energy based on traditional Markov random field (MRF), which makes interferometric and spatial contextual information more fully used in SAR image segmentation. According to the Hammersley-Clifford theorem, the problem of maximum a posteriori (MAP) for image segmentation is transformed into the solution of minimizing the sum of likelihood energy and neighborhood energy. Finally, the iterative condition model (ICM) is used to find the optimal solution. The experimental results demonstrate that the proposed method can segment SAR building effectively and obtain more accurate results than the traditional MRF method and K-means clustering.
基金The National Science and Technology Support Project under contract No.2014BAB12B02the Natural Science Foundation of Liaoning Province under contract No.201602042
文摘Oil spills pose a major threat to ocean ecosystems and their health. Synthetic aperture radar(SAR) sensors can detect oil spills on the sea surface. These oil spills appear as dark spots in SAR images. However, dark formations can be caused by a number of phenomena. It is aimed to distinguishing oil spills or look-alike objects. A novel method based on a bidimensional empirical mode decomposition is proposed. The selected dark formations are first decomposed into several bidimensional intrinsic mode functions and the residue. Subsequently, 64 dimension feature sets are calculated using the Hilbert spectral analysis and five new features are extracted with a relief algorithm. Mahalanobis distances are then used for classification. Three data sets containing oil spills or look-alikes are used to test the accuracy rate of the method. The accuracy rate is more than 90%. The experimental results demonstrate that the novel method can detect oil spills validly and accurately.
基金supported by National Natural Science Foundation of China(No.61971330)。
文摘The scattering points in a plasma sheath characterized with coupled velocities can cause pulse compression mismatching,which results in displacement and energy diffusion in the onedimension range profile.To solve this problem,we deduce the echo model of the plasma-sheathenveloped reentry object.By estimating the coupled velocities,we propose a compensation method to correct the defocus of an inverse synthetic aperture radar(ISAR)image in range dimension to improve the quality of the ISAR images.The simulation results suggest that the echoes from different regions of the surface of the reentry object have various coupling velocities,and the higher the coupled velocity,the more serious the displacement and energy diffusion in the range dimension.Our proposed method can correct the range dimension aberration.Two measurement metrics were used to evaluate the improvement of the compensation method.
基金supported by the National Natural Science Foundation of China(60871070)
文摘Target modeling and scattering function calculating are important prerequisites and groundwork for the synthetic aperture radar(SAR) imaging simulation.According to the difficult problems that normal methods cannot calculate the scattering function of electrically large object under the condition to wideband,an effective method of improved equivalent edge currents is presented and applied to SAR imaging simulation for the first time.This method improves calculating velocity and has relatively high precision.The concrete steps of applying the method are given.By way of the simulation experiment,the effectiveness of the method is verified.
文摘The paper presents an algorithm of automatic target detection in Synthetic Aperture Radar(SAR) images based on Maximum A Posteriori(MAP). The algorithm is divided into three steps. First, it employs Gaussian mixture distribution to approximate and estimate multi-modal histogram of SAR image. Then, based on the principle of MAP, when a priori probability is both unknown and learned respectively, the sample pixels are classified into different classes c = {target,shadow, background}. Last, it compares the results of two different target detections. Simulation results preferably indicate that the presented algorithm is fast and robust, with the learned a priori probability, an approach to target detection is reliable and promising.
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(XDA28100000)the K.C.Wong Education Foundation,Jilin Provincial Development and Reform Commission Innovation Capacity Building Project(grant number 2021C044-10)the Special fund project for high-tech indus-trialization of science and technology cooperation between Jilin Province and the Chinese Academy of Sciences(2021SYHZ0013).
文摘Mapping soil organic matter(SOM)content has become an important application of digital soil mapping.In this study,we processed all Sentinel-2 images covering the bare-soil period(March to June)in Northeast China from 2019 to 2022 and integrated the observation results into synthetic materials with four defined time intervals(10,15,20,and 30 d).Then,we used synthetic images corresponding to different time periods to conduct SOM mapping and determine the optimal time interval and time period beforefinally assessing the impacts of adding environmental covariates.The results showed the following:(1)in SOM mapping,the highest accuracy was obtained using day-of-year(DOY)120 to 140 synthetic images with 20 d time intervals,as well as with different time intervals,ranked as follows:20 d>30 d>15 d>10 d;(2)when using synthetic images at different time intervals to predict SOM,the best time period for predicting SOM was always within May;and(3)adding environmental covariates effectively improved the SOM mapping performance,and the multiyear average temperature was the most important factor.In general,our results demonstrated the valuable potential of SOM mapping using multiyear synthetic imagery,thereby allowing detailed mapping of large areas of cultivated soil.
文摘The conventional two dimensional(2D)inverse synthetic aperture radar(ISAR)imaging fails to provide the targets'three dimensional(3D)information.In this paper,a 3D ISAR imaging method for the space target is proposed based on mutliorbit observation data and an improved orthogonal matching pursuit(OMP)algorithm.Firstly,the 3D scattered field data is converted into a set of 2D matrix by stacking slices of the 3D data along the elevation direction dimension.Then,an improved OMP algorithm is applied to recover the space target's amplitude information via the 2D matrix data.Finally,scattering centers can be reconstructed with specific three dimensional locations.Numerical simulations are provided to demonstrate the effectiveness and superiority of the proposed 3D imaging method.
基金supported in part by the Science and Technology Innovation 2030-Key Project of“New Generation Artificial Intelligence”(2018AAA0102303)the Young Elite Scientists Sponsorship Program of China Association of Science and Technology(YESS20210289)+1 种基金the China Postdoctoral Science Foundation(2020TQ1057,2020M682823)the National Natural Science Foundation of China(U20B2071,U1913602,91948204)。
文摘Change detection(CD)is becoming indispensable for unmanned aerial vehicles(UAVs),especially in the domain of water landing,rescue and search.However,even the most advanced models require large amounts of data for model training and testing.Therefore,sufficient labeled images with different imaging conditions are needed.Inspired by computer graphics,we present a cloning method to simulate inland-water scene and collect an auto-labeled simulated dataset.The simulated dataset consists of six challenges to test the effects of dynamic background,weather,and noise on change detection models.Then,we propose an image translation framework that translates simulated images to synthetic images.This framework uses shared parameters(encoder and generator)and 22×22 receptive fields(discriminator)to generate realistic synthetic images as model training sets.The experimental results indicate that:1)different imaging challenges affect the performance of change detection models;2)compared with simulated images,synthetic images can effectively improve the accuracy of supervised models.
基金The Natural Science Foundation of Jiangsu Province(NoBK2008429)Open Research Foundation of State Key Laboratory ofMillimeter Waves of Southeast University(NoK200903)+1 种基金China Postdoctoral Science Foundation(No20080431126)Jiangsu Province Postdoctoral Science Foundation(No2007337)
文摘The convergence performance of the minimum entropy auto-focusing(MEA) algorithm for inverse synthetic aperture radar(ISAR) imaging is analyzed by simulation. The results show that a local optimal solution problem exists in the MEA algorithm. The cost function of the MEA algorithm is not a downward-convex function of multidimensional phases to be compensated. Only when the initial values of the compensated phases are chosen to be near the global minimal point of the entropy function, the MEA algorithm can converge to a global optimal solution. To study the optimal solution problem of the MEA algorithm, a new scheme of entropy function optimization for radar imaging is presented. First, the initial values of the compensated phases are estimated by using the modified Doppler centroid tracking (DCT)algorithm. Since these values are obtained according to the maximum likelihood (ML) principle, the initial phases can be located near the optimal solution values. Then, a fast MEA algorithm is used for the local searching process and the global optimal solution can be obtained. The simulation results show that this scheme can realize the global optimization of the MEA algorithm and can avoid the selection and adjustment of parameters such as iteration step lengths, threshold values, etc.
文摘Wavelet-fractal based SAR (synthetic aperture radar) image processing is one of the advanced technologies in image processing. The main concept of analysis is that after wavelet transformation, multifractal spectrum of the signal is different from that of noise. This difference is used to alleviate the noise produced by SAR image.The method to denoise SAR image using the process based on wavelet-fractai analysis is discussed in detail. Essentially, the present method focuses on adjusting the Hoelder exponent α of multifractal spectrum. After simulation, α should be adjusted to 1.72-1.73. The more the value of α exceeds 1.73, the less distinctive the edges of SAR image become. According to the authors denoising is optimal at α=1.72-1.73. In other words, when α =1.72-1.73, a smooth and denoised SAR image is produced.
基金Supported by the CRSRI Open Research Program(CKWV2013225/KY)the Open Project Foundation of Key Laboratory of the Yellow River Sediment of Ministry of Water Resource(2014006)+2 种基金the Open Project Foundation of Key Lab of Port,Waterway and Sedimentation Engineering of the Ministry of Transportthe State Key Lab of Urban Water Resource and Environment(HIT)(ES201409)the Priority Academic Program Development of Jiangsu Higher Education Institution
文摘To cope with the problems that edge detection operators are liable to make the detected edges too blurry for synthetic aperture radar(SAR)images,an edge detection method for detecting river in SAR images is proposed based on contourlet modulus maxima and improved mathematical morphology.The SAR image is firstly transformed to a contourlet domain.According to the directional information and gradient information of directional subband of contourlet transform,the modulus maximum and the improved mathematical morphology are used to detect high frequency and low frequency sub-image edges,respectively.Subsequently,the edges of river in SAR image are obtained after fusing the high frequency sub-image and the low frequency sub-image.Experimental results demonstrate that the proposed edge detection method can obtain more accurate edge location and reduce false edges,compared with the Canny method,the method based on wavelet and Canny,the method based on contourlet modulus maxima,and the method based on improved(ROEWA).The obtained river edges are complete and clear.
基金supported by the National Natural Science Foundation of China(61571388U1233109)
文摘As the signal bandwidth and the number of channels increase, the synthetic aperture radar (SAR) imaging system produces huge amount of data according to the Shannon-Nyquist theorem, causing a huge burden for data transmission. This paper concerns the coprime sampl which are proposed recently but ng and nested sparse sampling, have never been applied to real world for target detection, and proposes a novel way which utilizes these new sub-Nyquist sampling structures for SAR sampling in azimuth and reconstructs the data of SAR sampling by compressive sensing (CS). Both the simulated and real data are processed to test the algorithm, and the results indicate the way which combines these new undersampling structures and CS is able to achieve the SAR imaging effectively with much less data than regularly ways required. Finally, the influence of a little sampling jitter to SAR imaging is analyzed by theoretical analysis and experimental analysis, and then it concludes a little sampling jitter have no effect on image quality of SAR.
基金supported by the National Natural Science Foundation of China(6200220861572063+1 种基金61603225)the Natural Science Foundation of Shandong Province(ZR2016FQ04)。
文摘A novel synthetic aperture radar(SAR)image de-noising method based on the local pixel grouping(LPG)principal component analysis(PCA)and guided filter is proposed.This method contains two steps.In the first step,we process the noisy image by coarse filters,which can suppress the speckle effectively.The original SAR image is transformed into the additive noise model by logarithmic transform with deviation correction.Then,we use the pixel and its nearest neighbors as a vector to select training samples from the local window by LPG based on the block similar matching.The LPG method ensures that only the similar sample patches are used in the local statistical calculation of PCA transform estimation,so that the local features of the image can be well preserved after coefficients shrinkage in the PCA domain.In the second step,we do the guided filtering which can effectively eliminate small artifacts left over from the coarse filtering.Experimental results of simulated and real SAR images show that the proposed method outstrips the state-of-the-art image de-noising methods in the peak signalto-noise ratio(PSNR),the structural similarity(SSIM)index and the equivalent number of looks(ENLs),and is of perceived image quality.