The evaluation of urban flood-waterlogged vulnerability is very important to the safety of urban flood control. In this paper, the evaluation of consolidated index is used. Respectively, AHP and entropy method calcula...The evaluation of urban flood-waterlogged vulnerability is very important to the safety of urban flood control. In this paper, the evaluation of consolidated index is used. Respectively, AHP and entropy method calculate the subjective and objective weight of the evaluation indicators, and combine them by game theory. So we can obtain synthetic weight based on objective and subjective weights. The evaluation of urban flood-waterlogged vulnerability as target layer, a single variable multi-objective fuzzy optimization model is established. We use the model to evaluate flood-waterlogged vulnerability of 13 prefecture-level city in Hunan, and compare it with other evaluation method. The results show that the evaluation method has certain adaptability and reliability, and it' s helpfid to the construction planning of urban flood control.展开更多
Coal burst is a severe hazard that can result in fatalities and damage of facilities in underground coal mines.To address this issue,a robust unascertained combination model is proposed to study the coal burst hazard ...Coal burst is a severe hazard that can result in fatalities and damage of facilities in underground coal mines.To address this issue,a robust unascertained combination model is proposed to study the coal burst hazard based on an updated database.Four assessment indexes are used in the model,which are the dynamic failure duration(DT),elastic energy index(WET),impact energy index(KE)and uniaxial compressive strength(RC).Four membership functions,including linear(L),parabolic(P),S and Weibull(W)functions,are proposed to measure the uncertainty level of individual index.The corresponding weights are determined through information entropy(EN),analysis hierarchy process(AHP)and synthetic weights(CW).Simultaneously,the classification criteria,including unascertained cluster(UC)and credible identification principle(CIP),are analyzed.The combination algorithm,consisting of P function,CW and CIP(P-CW-CIP),is selected as the optimal classification model in function of theory analysis and to train the samples.Ultimately,the established ensemble model is further validated through test samples with 100%accuracy.The results reveal that the hybrid model has a great potential in the coal burst hazard evaluation in underground coal mines.展开更多
Projection of hazard changes in climate extremes is critical to assessing the potential impacts of climate change on human and natural systems. Using simulations of providing regional climates for impacts studies, fiv...Projection of hazard changes in climate extremes is critical to assessing the potential impacts of climate change on human and natural systems. Using simulations of providing regional climates for impacts studies, five indicators (rainstorm days, maximum 3-day precipitation, elevation, gradient and distance from river or lake) were selected to project the spatial patterns of flood hazard over Yangtze River Basin for the baseline period (1961– 1990) and future (2011–2100) under SRES B2 scenario. The results showed the mean annual rainstorm days over the basin by the near-term, mid-term and long-term would increase from 3.9 days to 4.7, 4.9 and 5.1 days, and the mean annual maximum 3-day precipitation from 122 mm to 143, 146 and 149 mm, respectively. The flood hazard of the basin would become more severe, especially in the middle and lower reaches. Flood hazard grade 5 by the nearterm, mid-term and long-term would extend from 10.99% to 25.46, 28.14 and 29.75%, respectively.展开更多
Aimed at solving the problems of road network object selection at any unknown scale, the existing methods on object selection are integrated and extended in this paper, and a new object interpolation method is propose...Aimed at solving the problems of road network object selection at any unknown scale, the existing methods on object selection are integrated and extended in this paper, and a new object interpolation method is proposed, which reflects the inheritable and transferable characteristics of related information among multi-scale representation objects, and takes the attribute effects into account. Then the basic idea, the overall framework and the technical flow of the interpolation are put forward, at the samet:me synthetical weight function of the interpolation method is defined and described. The method and technical strategies of object selection are extended, and the key problems are solved, including the dejign of the objective quantitative and structural selections based on the weight values, the interpolation experiment strategies and technical flows, the result of the test shows that the object interpolation method not only inherits the objects at smaller scales, but also takes the attribute effect into account when deriving objects from larger scales according to the road importance, which is a guarantee to objective selection of the road objects at middle scales.展开更多
As synthetic aperture radar(SAR) has been widely used nearly in every field, SAR image de-noising became a very important research field. A new SAR image de-noising method based on texture strength and weighted nucl...As synthetic aperture radar(SAR) has been widely used nearly in every field, SAR image de-noising became a very important research field. A new SAR image de-noising method based on texture strength and weighted nuclear norm minimization(WNNM) is proposed. To implement blind de-noising, the accurate estimation of noise variance is very important. So far, it is still a challenge to estimate SAR image noise level accurately because of the rich texture. Principal component analysis(PCA) and the low rank patches selected by image texture strength are used to estimate the noise level. With the help of noise level, WNNM can be expected to SAR image de-noising. Experimental results show that the proposed method outperforms many excellent de-noising algorithms such as Bayes least squares-Gaussian scale mixtures(BLS-GSM) method, non-local means(NLM) filtering in terms of both quantitative measure and visual perception quality.展开更多
In order to clarify the slag system of high Cr2O3 vanadium-titanium magnetite smelting in BF (blast furnace), the melting properties of slag samples prepared by analytically pure reagents were measured. By means of ...In order to clarify the slag system of high Cr2O3 vanadium-titanium magnetite smelting in BF (blast furnace), the melting properties of slag samples prepared by analytically pure reagents were measured. By means of orthogonal test synthetic weighted score method, the optimal slag for high Cr2O3 vanadium-titanium magnetite was obtained, which contained 10% MgO, 8% TiO2 and 15% Al2O3, with the binary basicity being 1.15. In addition, the effects of basicity, MgO, TiO2 and A12 03 on slag melting properties were investigated by single factor test, and the results showed that, with increasing the basicity or TiO2 content, melting temperature (Tin) increased, whereas initial vis- cosity (r/0) and high temperature viscosity (r/h) decreased. With increasing the MgO content, Tm decreased firstly and then increased. With increasing the Al2 O3 content, Tm increased, and η0 and r/h decreased firstly and then increased.展开更多
文摘The evaluation of urban flood-waterlogged vulnerability is very important to the safety of urban flood control. In this paper, the evaluation of consolidated index is used. Respectively, AHP and entropy method calculate the subjective and objective weight of the evaluation indicators, and combine them by game theory. So we can obtain synthetic weight based on objective and subjective weights. The evaluation of urban flood-waterlogged vulnerability as target layer, a single variable multi-objective fuzzy optimization model is established. We use the model to evaluate flood-waterlogged vulnerability of 13 prefecture-level city in Hunan, and compare it with other evaluation method. The results show that the evaluation method has certain adaptability and reliability, and it' s helpfid to the construction planning of urban flood control.
基金funded by the National Science Foundation of China(Nos.72088101 and 41807259)the Innovation-Driven Project of Central South University(No.2020CX040)the Shenghua Lieying Program of Central South University(Principle Investigator:Dr.Jian Zhou)。
文摘Coal burst is a severe hazard that can result in fatalities and damage of facilities in underground coal mines.To address this issue,a robust unascertained combination model is proposed to study the coal burst hazard based on an updated database.Four assessment indexes are used in the model,which are the dynamic failure duration(DT),elastic energy index(WET),impact energy index(KE)and uniaxial compressive strength(RC).Four membership functions,including linear(L),parabolic(P),S and Weibull(W)functions,are proposed to measure the uncertainty level of individual index.The corresponding weights are determined through information entropy(EN),analysis hierarchy process(AHP)and synthetic weights(CW).Simultaneously,the classification criteria,including unascertained cluster(UC)and credible identification principle(CIP),are analyzed.The combination algorithm,consisting of P function,CW and CIP(P-CW-CIP),is selected as the optimal classification model in function of theory analysis and to train the samples.Ultimately,the established ensemble model is further validated through test samples with 100%accuracy.The results reveal that the hybrid model has a great potential in the coal burst hazard evaluation in underground coal mines.
基金supported by the National Technology R&D Program (Grant nos. 2006BAD20B05 and 2008BAK50B06)
文摘Projection of hazard changes in climate extremes is critical to assessing the potential impacts of climate change on human and natural systems. Using simulations of providing regional climates for impacts studies, five indicators (rainstorm days, maximum 3-day precipitation, elevation, gradient and distance from river or lake) were selected to project the spatial patterns of flood hazard over Yangtze River Basin for the baseline period (1961– 1990) and future (2011–2100) under SRES B2 scenario. The results showed the mean annual rainstorm days over the basin by the near-term, mid-term and long-term would increase from 3.9 days to 4.7, 4.9 and 5.1 days, and the mean annual maximum 3-day precipitation from 122 mm to 143, 146 and 149 mm, respectively. The flood hazard of the basin would become more severe, especially in the middle and lower reaches. Flood hazard grade 5 by the nearterm, mid-term and long-term would extend from 10.99% to 25.46, 28.14 and 29.75%, respectively.
基金Supported by the National Natural Science Foundation of China (No. 40701147), the Natural Science Foundation of Beijing (No. 8102014), and the Posoctoral Science Foundation of China (Special Issue) (No. 200801096).
文摘Aimed at solving the problems of road network object selection at any unknown scale, the existing methods on object selection are integrated and extended in this paper, and a new object interpolation method is proposed, which reflects the inheritable and transferable characteristics of related information among multi-scale representation objects, and takes the attribute effects into account. Then the basic idea, the overall framework and the technical flow of the interpolation are put forward, at the samet:me synthetical weight function of the interpolation method is defined and described. The method and technical strategies of object selection are extended, and the key problems are solved, including the dejign of the objective quantitative and structural selections based on the weight values, the interpolation experiment strategies and technical flows, the result of the test shows that the object interpolation method not only inherits the objects at smaller scales, but also takes the attribute effect into account when deriving objects from larger scales according to the road importance, which is a guarantee to objective selection of the road objects at middle scales.
基金supported by the National Natural Science Foundation of China(6140130861572063)+7 种基金the Natural Science Foundation of Hebei Province(F2016201142F2016201187)the Natural Social Foundation of Hebei Province(HB15TQ015)the Science Research Project of Hebei Province(QN2016085ZC2016040)the Science and Technology Support Project of Hebei Province(15210409)the Natural Science Foundation of Hebei University(2014-303)the National Comprehensive Ability Promotion Project of Western and Central China
文摘As synthetic aperture radar(SAR) has been widely used nearly in every field, SAR image de-noising became a very important research field. A new SAR image de-noising method based on texture strength and weighted nuclear norm minimization(WNNM) is proposed. To implement blind de-noising, the accurate estimation of noise variance is very important. So far, it is still a challenge to estimate SAR image noise level accurately because of the rich texture. Principal component analysis(PCA) and the low rank patches selected by image texture strength are used to estimate the noise level. With the help of noise level, WNNM can be expected to SAR image de-noising. Experimental results show that the proposed method outperforms many excellent de-noising algorithms such as Bayes least squares-Gaussian scale mixtures(BLS-GSM) method, non-local means(NLM) filtering in terms of both quantitative measure and visual perception quality.
基金Item Sponsored by National Natural Science Foundation of China(51090384)National High Technology Research and Development Program(863 Program)of China(2012AA062302,2012AA062304)Fundamental Research Funds for the Central Universities of China(N110202001)
文摘In order to clarify the slag system of high Cr2O3 vanadium-titanium magnetite smelting in BF (blast furnace), the melting properties of slag samples prepared by analytically pure reagents were measured. By means of orthogonal test synthetic weighted score method, the optimal slag for high Cr2O3 vanadium-titanium magnetite was obtained, which contained 10% MgO, 8% TiO2 and 15% Al2O3, with the binary basicity being 1.15. In addition, the effects of basicity, MgO, TiO2 and A12 03 on slag melting properties were investigated by single factor test, and the results showed that, with increasing the basicity or TiO2 content, melting temperature (Tin) increased, whereas initial vis- cosity (r/0) and high temperature viscosity (r/h) decreased. With increasing the MgO content, Tm decreased firstly and then increased. With increasing the Al2 O3 content, Tm increased, and η0 and r/h decreased firstly and then increased.