The district cooling system (DCS) with ice storage can reduce the peak electricity demand of the business district buildings it serves, improve system efficiency, and lower operational costs. This study utilizes a mon...The district cooling system (DCS) with ice storage can reduce the peak electricity demand of the business district buildings it serves, improve system efficiency, and lower operational costs. This study utilizes a monitoring and control platform for DCS with ice storage to analyze historical parameter values related to system operation and executed operations. We assess the distribution of cooling loads among various devices within the DCS, identify operational characteristics of the system through correlation analysis and principal component analysis (PCA), and subsequently determine key parameters affecting changes in cooling loads. Accurate forecasting of cooling loads is crucial for determining optimal control strategies. The research process can be summarized briefly as follows: data preprocessing, parameter analysis, parameter selection, and validation of load forecasting performance. The study reveals that while individual devices in the system perform well, there is considerable room for improving overall system efficiency. Six principal components have been identified as input parameters for the cold load forecasting model, with each of these components having eigenvalues greater than 1 and contributing to an accumulated variance of 87.26%, and during the dimensionality reduction process, we obtained a confidence ellipse with a 95% confidence interval. Regarding cooling load forecasting, the Relative Absolute Error (RAE) value of the light gradient boosting machine (lightGBM) algorithm is 3.62%, Relative Root Mean Square Error (RRMSE) is 42.75%, and R-squared value (R<sup>2</sup>) is 92.96%, indicating superior forecasting performance compared to other commonly used cooling load forecasting algorithms. This research provides valuable insights and auxiliary guidance for data analysis and optimizing operations in practical engineering applications. .展开更多
In order to more effectively assess the health status of a project, the monitoring indices in a project's life cycle are divided into quality index, cost index, time index, satisfaction index, and sustainable develop...In order to more effectively assess the health status of a project, the monitoring indices in a project's life cycle are divided into quality index, cost index, time index, satisfaction index, and sustainable development index. Based on the feature of qualitative and quantitative indices combining, the PCA-PR (principal component analysis and pattern recognition) model is constructed. The model first analyzes the principal components of the life-cycle indices system constructed above, and picks up those principal component indices that can reflect the health status of a project at any time. Then the pattern recognition model is used to study these principal components, which means that the real time health status of the project can be divided into five lamps from a green lamp to a red one and the health status lamp of the project can be recognized by using the PR model and those principal components. Finally, the process is shown with a real example and a conclusion consistent with the actual situation is drawn. So the validity of the index system and the PCA-PR model can be confirmed.展开更多
Biochemistry weapon is raising new tools of war and terror.This research is an experiment about portable system for CWAs (chemical warfare agents) detection using micro array gas system.CWAs were divided into four typ...Biochemistry weapon is raising new tools of war and terror.This research is an experiment about portable system for CWAs (chemical warfare agents) detection using micro array gas system.CWAs were divided into four types such as blood, nerve,vesicant,and choking agent.To detect various CWAs,semiconductor thick film sensor array based on tin oxide was fabricated and their gas responses were examined.Operating temperature was range of 250℃to 350℃and gas concentration was range of 0.1μg/g to 10μg/g.Sensor array was measured as operating temperatures,concentrations for four simulant agents of CWAs.Extracted parameters from results were carried out classification among CWAs through the principal component analysis (PCA).Also,classification of gases is studied using adaptive resonance theory (ART) that is one of neural network algorithm.Results displayed using PDA system.展开更多
Eco-efficiency is a valuable tool for managing and solving issues involving resource consumption and pollution emission in current production processes.Despite the popularity of the term"eco-efficiency"in bu...Eco-efficiency is a valuable tool for managing and solving issues involving resource consumption and pollution emission in current production processes.Despite the popularity of the term"eco-efficiency"in business,limited attention has been paid to measuring and reporting regional eco-efficiency for local government policy makers.Based on the concept and method of eco-efficiency,an indicator system of regional eco-efficiency is established in this study.The indicator system comprises 22 indicators,which are divided in to three categories including socio-economic development,resources consumption, environmental pressure.As a promising statistical technique, principle component analysis is used to set the weight of indicators which attempts to calculate the eco-efficiency indices of Qingdao's Chengyang District.The results show that the eco-efficiency of Chengyang District has clearly improved 35.1% with small fluctuation from 1995 to 2003.Socio-economic development index and resources consumption index also represent obvious increasing trends.The correlation coefficient between soci-economic development index and resources consumption index is 0.979,which means the social progress and economic growth of Chengyang District depend on an extravagant consumption of resources.The environmental pressure index increased slowly before 1997 and declined gradually after 1997,due to more attention being paid to environmental protection by local government in recent years.Chengyang District still keeps the traditional economic development mode with a high consumption and high production,so the emphases of future development should put on improving the improving the efficient use of natural resources and promoting environmental management sustainability.The results show that the indicators system of regional eco-efficiency is a promising method to quantitatively evaluate resources and environmental efficiency and provide an effective decision-making support for local governments.展开更多
Popular descriptive multivariate statistical method currently employed is the principal component analyses (PCA) method. PCA is used to develop linear combinations that successively maximize the total variance of a ...Popular descriptive multivariate statistical method currently employed is the principal component analyses (PCA) method. PCA is used to develop linear combinations that successively maximize the total variance of a sample where there is no known group structure. This study aimed at demonstrating the performance evaluation of pilot activated sludge treatment system by inoculating a strain of Pseudomonas capable of degrading malathion which was isolated by enrichment technique. An intensive analytical program was followed for evaluating the efficiency of biosimulator by maintaining the dissolved oxygen (DO) concentration at 4.0 mg/L. Analyses by high performance liquid chromatographic technique revealed that 90% of malathion removal was achieved within 29 h of treatment whereas COD got reduced considerably during the treatment process and mean removal efficiency was found to be 78%. The mean pH values increased gradually during the treatment process ranging from 7.36-8.54. Similarly the mean ammonia-nitrogen (NH3-N) values were found to be fluctuating between 19.425-28.488 mg/L, mean nitrite-nitrogen (NO3-N) ranging between 1.301- 2.940 mg/L and mean nitrate-nitrogen (NO3-N) ranging between 0.0071-0.0711 mg/L. The study revealed that inoculation of bacterial culture under laboratory conditions could be used in bioremediation of environmental pollution caused by xenobiotics. The PCA analyses showed that pH, COD, organic load and total malathion concentration were highly correlated and emerged as the variables controlling the first component, whereas dissolved oxygen, NO3-N and NH3-N governed the second component. The third component repeated the trend exhibited by the first two components.展开更多
The specificity of prostate-specific antigen (PSA) for early intervention in repeat biopsy is unsatisfactory. Prostate cancer antigen 3 (PCA3) may be more accurate in outcome prediction than other methods for the ...The specificity of prostate-specific antigen (PSA) for early intervention in repeat biopsy is unsatisfactory. Prostate cancer antigen 3 (PCA3) may be more accurate in outcome prediction than other methods for the early detection of prostate cancer (PCa). However, the results were inconsistent in repeated biopsies. Therefore, we performed a systematic review and meta-analysis to evaluate the role of PCA3 in outcome prediction. A systematic bibliographic search was conducted for articles published before April 2013, using PubMed, Medline, Web of Science, Embase and other databases from health technology assessment agencies. The quality of the studies was assessed on the basis of QUADAS criteria. Eleven studies of diagnostic tests with moderate to high quality were selected. A meta-analysis was carried out to synthesize the results. The results of the meta-analyses were heterogeneous among studies. We performed a subgroup analysis (with or without inclusion of high-grade prostatic intraepithelial neoplasia (HGPIN) and atypical small acinar proliferation (ASAP)). Using a PCA3 cutoff of 20 or 35, in the two sub-groups, the global sensitivity values were 0.93 or 0.80 and 0.79 or 0.75, specificities were 0.65 or 0.44 and 0.78 or 0.70, positive likelihood ratios were 1.86 or 1.58 and 2.49 or 1.78, negative likelihood ratios were 0.81 or 0.43 and 0.91 or 0.82 and diagnostic odd ratios (ORs) were 5.73 or 3.45 and 7.13 or 4.11, respectively. The areas under the curve (AUCs) of the summary receiver operating characteristic curve were 0.85 or 0.72 and 0.81 or 0.69, respectively. PCA3 can be used for repeat biopsy of the prostate to improve accuracy of PCa detection. Unnecessary biopsies can be avoided by using a PCa cutoff score of 20.展开更多
The indicator system is the foundation and emphasis in the effectiveness evaluation of system of systems(SoS). In the past, indicator systems were founded based on qualitative methods, and every indicator was mainly d...The indicator system is the foundation and emphasis in the effectiveness evaluation of system of systems(SoS). In the past, indicator systems were founded based on qualitative methods, and every indicator was mainly determined by the expert with experience. This paper proposed a brand-new method to construct indicator systems based on the repeated simulation of the scenario space, and calculated by quantitative data. Firstly, the selection of key indicators using the Gini indicator importance measure(IIM)is calculated by random forests(RFs). Then, principal component analysis(PCA) is applied when we use the selected indicators to construct the composite indicator system of SoS. Furthermore,a set of rulesare is developed to verify the practicability of the indicator system such as correlation, robustness, accuracy and convergence. Experiment shows that the algorithm achieves good results for the construction of composite indicators of So S.展开更多
Stream sediment geochemistry remains a versatile tool in exploration especially in regions where knowledge of the primary mineralization is lacking and the exploration activities are still at reconnaissance stage. In ...Stream sediment geochemistry remains a versatile tool in exploration especially in regions where knowledge of the primary mineralization is lacking and the exploration activities are still at reconnaissance stage. In this study, we investigate the concentrations of gold and associated elements in stream sediment samples from the Vaimba-Lidi drainage system in northern Cameroon;a relatively remote area where alluvial gold is worked locally, and exploration activities are at early stage. The main river and its principal first and second order tributaries were sampled, panned for gold grain recovery and the 100 μm size fraction analyzed for Au by fire assay with Ni finish. A suite of other elements were analyzed for by inductively coupled plasma mass spectrometry (ICP-MS). Gold grades estimated by the panning and weighing technique rarely exceed1 g/t while the Au concentrations from chemical analysis range from 3.0 to 354.0 ppm. The spatial distribution of gold and all the other elements are presented as point symbol maps and the data analyzed using multivariate statistics. From the principal component analysis (PCA), the As-Mo-W-Ag as well as the Au-Zn factors point to the presence of primary hydrothermal gold-sulphide mineralization in the area and this can be further investigated. These results highlight the importance of multielement analysis and multivariate statistical interpretation of sediment geochemical data in inferring the nature of the underlying primary mineralization in any region.展开更多
In this paper, a low-dimensional multiple-input and multiple-output (MIMO) model predictive control (MPC) configuration is presented for partial differential equation (PDE) unknown spatially-distributed systems ...In this paper, a low-dimensional multiple-input and multiple-output (MIMO) model predictive control (MPC) configuration is presented for partial differential equation (PDE) unknown spatially-distributed systems (SDSs). First, the dimension reduction with principal component analysis (PCA) is used to transform the high-dimensional spatio-temporal data into a low-dimensional time domain. The MPC strategy is proposed based on the online correction low-dimensional models, where the state of the system at a previous time is used to correct the output of low-dimensional models. Sufficient conditions for closed-loop stability are presented and proven. Simulations demonstrate the accuracy and efficiency of the proposed methodologies.展开更多
This paper presents a new pattern recognition system for Chinese spirit identification by using the polymer quartz piezoelectric crystal sensor based e-nose. The sensors are designed based on quartz crystal microbala...This paper presents a new pattern recognition system for Chinese spirit identification by using the polymer quartz piezoelectric crystal sensor based e-nose. The sensors are designed based on quartz crystal microbalance(QCM) principle,and they could capture different vibration frequency signal values for Chinese spirit identification. For each sensor in an8-channel sensor array, seven characteristic values of the original vibration frequency signal values, i.e., average value(A),root-mean-square value(RMS), shape factor value(S_f), crest factor value(C_f), impulse factor value(I_f), clearance factor value(CL_f), kurtosis factor value(K_v) are first extracted. Then the dimension of the characteristic values is reduced by the principle components analysis(PCA) method. Finally the back propagation(BP) neutral network algorithm is used to recognize Chinese spirits. The experimental results show that the recognition rate of six kinds of Chinese spirits is 93.33% and our proposed new pattern recognition system can identify Chinese spirits effectively.展开更多
Probability of detection(POD)graphics allow for a change from qualitative to quantitative assessment for every damage detection system,and as such it is a main request for conventional non-destructive testing(NDT)tech...Probability of detection(POD)graphics allow for a change from qualitative to quantitative assessment for every damage detection system,and as such it is a main request for conventional non-destructive testing(NDT)techniques.Its availability can greatly help towards the industrialization of the corresponding Structural health monitoring(SHM)system.But having in mind that for SHM systems the sensors are at fixed positions,and the location of a potential damage would change its detectability.Consequently robust simulation tools are required to obtain the model assisted probability of detection(MAPOD)which is needed to validate the SHM system.This tool may also help for the optimization of the sensor distribution,and finally will allow a probabilistic risk management.INDEUS,simulation of ultrasonic waves SHM system,was a main milestone in this direction.This article deals with the simulation tools for a strain based SHM system,using fiber optic sensors(FOS).FOS are essentially strain/temperature sensors,either with multi-point or with distributed sensing.The simulation tool includes the finite element model(FEM)for the original and damaged structure,and algorithms to compare the strain data at the pre-established sensors locations,and from this comparison to extract information about damage occurrence and location.The study has been applied to the structure of an all-composite unmanned aircraft vehicle(UAV)now under construction,designed at Universidad Politecnica de Madrid for the inspection of electrical utilities networks.Distributed sensing optical fibers were internally bonded at the fuselage and wing.Routine inspection is planned to be done with the aircraft at the test bench by imposing known loads.From the acquired strain data,damage occurrence may be calculated as slight deviations from the baselines.This is a fast inspection procedure without requiring trained specialists,and it would allow for detection of hidden damages.Simulation indicates that stringer partial debondings are detected before they become critical,while small delaminations as those produced by barely visible impact damages would require a prohibited number of sensing lines.These simulation tools may easily be applied to any other complex structure,just by changing the FEM models.From these results it is shown how a fiber optic based SHM system may be used as a reliable damage detection procedure.展开更多
A weather-adaptive forward collision warning (FCW) system was presented by applying local features for vehicle detection and global features for vehicle verification. In the system, horizontal and vertical edge maps a...A weather-adaptive forward collision warning (FCW) system was presented by applying local features for vehicle detection and global features for vehicle verification. In the system, horizontal and vertical edge maps are separately calculated. Then edge maps are threshold by an adaptive threshold value to adapt the brightness variation. Third, the edge points are linked to generate possible objects. Fourth, the objects are judged based on edge response, location, and symmetry to generate vehicle candidates. At last, a method based on the principal component analysis (PCA) is proposed to verify the vehicle candidates. The proposed FCW system has the following properties: 1) the edge extraction is adaptive to various lighting condition;2) the local features are mutually processed to improve the reliability of vehicle detection;3) the hierarchical schemes of vehicle detection enhance the adaptability to various weather conditions;4) the PCA-based verification can strictly eliminate the candidate regions without vehicle appearance.展开更多
文摘The district cooling system (DCS) with ice storage can reduce the peak electricity demand of the business district buildings it serves, improve system efficiency, and lower operational costs. This study utilizes a monitoring and control platform for DCS with ice storage to analyze historical parameter values related to system operation and executed operations. We assess the distribution of cooling loads among various devices within the DCS, identify operational characteristics of the system through correlation analysis and principal component analysis (PCA), and subsequently determine key parameters affecting changes in cooling loads. Accurate forecasting of cooling loads is crucial for determining optimal control strategies. The research process can be summarized briefly as follows: data preprocessing, parameter analysis, parameter selection, and validation of load forecasting performance. The study reveals that while individual devices in the system perform well, there is considerable room for improving overall system efficiency. Six principal components have been identified as input parameters for the cold load forecasting model, with each of these components having eigenvalues greater than 1 and contributing to an accumulated variance of 87.26%, and during the dimensionality reduction process, we obtained a confidence ellipse with a 95% confidence interval. Regarding cooling load forecasting, the Relative Absolute Error (RAE) value of the light gradient boosting machine (lightGBM) algorithm is 3.62%, Relative Root Mean Square Error (RRMSE) is 42.75%, and R-squared value (R<sup>2</sup>) is 92.96%, indicating superior forecasting performance compared to other commonly used cooling load forecasting algorithms. This research provides valuable insights and auxiliary guidance for data analysis and optimizing operations in practical engineering applications. .
基金The Social Science Fund of Hebei Province (No.200607011)the Key Science and Technology Project of Hebei Province(No.07213529)
文摘In order to more effectively assess the health status of a project, the monitoring indices in a project's life cycle are divided into quality index, cost index, time index, satisfaction index, and sustainable development index. Based on the feature of qualitative and quantitative indices combining, the PCA-PR (principal component analysis and pattern recognition) model is constructed. The model first analyzes the principal components of the life-cycle indices system constructed above, and picks up those principal component indices that can reflect the health status of a project at any time. Then the pattern recognition model is used to study these principal components, which means that the real time health status of the project can be divided into five lamps from a green lamp to a red one and the health status lamp of the project can be recognized by using the PR model and those principal components. Finally, the process is shown with a real example and a conclusion consistent with the actual situation is drawn. So the validity of the index system and the PCA-PR model can be confirmed.
文摘Biochemistry weapon is raising new tools of war and terror.This research is an experiment about portable system for CWAs (chemical warfare agents) detection using micro array gas system.CWAs were divided into four types such as blood, nerve,vesicant,and choking agent.To detect various CWAs,semiconductor thick film sensor array based on tin oxide was fabricated and their gas responses were examined.Operating temperature was range of 250℃to 350℃and gas concentration was range of 0.1μg/g to 10μg/g.Sensor array was measured as operating temperatures,concentrations for four simulant agents of CWAs.Extracted parameters from results were carried out classification among CWAs through the principal component analysis (PCA).Also,classification of gases is studied using adaptive resonance theory (ART) that is one of neural network algorithm.Results displayed using PDA system.
文摘Eco-efficiency is a valuable tool for managing and solving issues involving resource consumption and pollution emission in current production processes.Despite the popularity of the term"eco-efficiency"in business,limited attention has been paid to measuring and reporting regional eco-efficiency for local government policy makers.Based on the concept and method of eco-efficiency,an indicator system of regional eco-efficiency is established in this study.The indicator system comprises 22 indicators,which are divided in to three categories including socio-economic development,resources consumption, environmental pressure.As a promising statistical technique, principle component analysis is used to set the weight of indicators which attempts to calculate the eco-efficiency indices of Qingdao's Chengyang District.The results show that the eco-efficiency of Chengyang District has clearly improved 35.1% with small fluctuation from 1995 to 2003.Socio-economic development index and resources consumption index also represent obvious increasing trends.The correlation coefficient between soci-economic development index and resources consumption index is 0.979,which means the social progress and economic growth of Chengyang District depend on an extravagant consumption of resources.The environmental pressure index increased slowly before 1997 and declined gradually after 1997,due to more attention being paid to environmental protection by local government in recent years.Chengyang District still keeps the traditional economic development mode with a high consumption and high production,so the emphases of future development should put on improving the improving the efficient use of natural resources and promoting environmental management sustainability.The results show that the indicators system of regional eco-efficiency is a promising method to quantitatively evaluate resources and environmental efficiency and provide an effective decision-making support for local governments.
文摘Popular descriptive multivariate statistical method currently employed is the principal component analyses (PCA) method. PCA is used to develop linear combinations that successively maximize the total variance of a sample where there is no known group structure. This study aimed at demonstrating the performance evaluation of pilot activated sludge treatment system by inoculating a strain of Pseudomonas capable of degrading malathion which was isolated by enrichment technique. An intensive analytical program was followed for evaluating the efficiency of biosimulator by maintaining the dissolved oxygen (DO) concentration at 4.0 mg/L. Analyses by high performance liquid chromatographic technique revealed that 90% of malathion removal was achieved within 29 h of treatment whereas COD got reduced considerably during the treatment process and mean removal efficiency was found to be 78%. The mean pH values increased gradually during the treatment process ranging from 7.36-8.54. Similarly the mean ammonia-nitrogen (NH3-N) values were found to be fluctuating between 19.425-28.488 mg/L, mean nitrite-nitrogen (NO3-N) ranging between 1.301- 2.940 mg/L and mean nitrate-nitrogen (NO3-N) ranging between 0.0071-0.0711 mg/L. The study revealed that inoculation of bacterial culture under laboratory conditions could be used in bioremediation of environmental pollution caused by xenobiotics. The PCA analyses showed that pH, COD, organic load and total malathion concentration were highly correlated and emerged as the variables controlling the first component, whereas dissolved oxygen, NO3-N and NH3-N governed the second component. The third component repeated the trend exhibited by the first two components.
文摘The specificity of prostate-specific antigen (PSA) for early intervention in repeat biopsy is unsatisfactory. Prostate cancer antigen 3 (PCA3) may be more accurate in outcome prediction than other methods for the early detection of prostate cancer (PCa). However, the results were inconsistent in repeated biopsies. Therefore, we performed a systematic review and meta-analysis to evaluate the role of PCA3 in outcome prediction. A systematic bibliographic search was conducted for articles published before April 2013, using PubMed, Medline, Web of Science, Embase and other databases from health technology assessment agencies. The quality of the studies was assessed on the basis of QUADAS criteria. Eleven studies of diagnostic tests with moderate to high quality were selected. A meta-analysis was carried out to synthesize the results. The results of the meta-analyses were heterogeneous among studies. We performed a subgroup analysis (with or without inclusion of high-grade prostatic intraepithelial neoplasia (HGPIN) and atypical small acinar proliferation (ASAP)). Using a PCA3 cutoff of 20 or 35, in the two sub-groups, the global sensitivity values were 0.93 or 0.80 and 0.79 or 0.75, specificities were 0.65 or 0.44 and 0.78 or 0.70, positive likelihood ratios were 1.86 or 1.58 and 2.49 or 1.78, negative likelihood ratios were 0.81 or 0.43 and 0.91 or 0.82 and diagnostic odd ratios (ORs) were 5.73 or 3.45 and 7.13 or 4.11, respectively. The areas under the curve (AUCs) of the summary receiver operating characteristic curve were 0.85 or 0.72 and 0.81 or 0.69, respectively. PCA3 can be used for repeat biopsy of the prostate to improve accuracy of PCa detection. Unnecessary biopsies can be avoided by using a PCa cutoff score of 20.
基金supported by the Major Program of the National Natural Science Foundation of China(U1435218)National Natural Science Foundation of China(6140340171401168)
文摘The indicator system is the foundation and emphasis in the effectiveness evaluation of system of systems(SoS). In the past, indicator systems were founded based on qualitative methods, and every indicator was mainly determined by the expert with experience. This paper proposed a brand-new method to construct indicator systems based on the repeated simulation of the scenario space, and calculated by quantitative data. Firstly, the selection of key indicators using the Gini indicator importance measure(IIM)is calculated by random forests(RFs). Then, principal component analysis(PCA) is applied when we use the selected indicators to construct the composite indicator system of SoS. Furthermore,a set of rulesare is developed to verify the practicability of the indicator system such as correlation, robustness, accuracy and convergence. Experiment shows that the algorithm achieves good results for the construction of composite indicators of So S.
文摘Stream sediment geochemistry remains a versatile tool in exploration especially in regions where knowledge of the primary mineralization is lacking and the exploration activities are still at reconnaissance stage. In this study, we investigate the concentrations of gold and associated elements in stream sediment samples from the Vaimba-Lidi drainage system in northern Cameroon;a relatively remote area where alluvial gold is worked locally, and exploration activities are at early stage. The main river and its principal first and second order tributaries were sampled, panned for gold grain recovery and the 100 μm size fraction analyzed for Au by fire assay with Ni finish. A suite of other elements were analyzed for by inductively coupled plasma mass spectrometry (ICP-MS). Gold grades estimated by the panning and weighing technique rarely exceed1 g/t while the Au concentrations from chemical analysis range from 3.0 to 354.0 ppm. The spatial distribution of gold and all the other elements are presented as point symbol maps and the data analyzed using multivariate statistics. From the principal component analysis (PCA), the As-Mo-W-Ag as well as the Au-Zn factors point to the presence of primary hydrothermal gold-sulphide mineralization in the area and this can be further investigated. These results highlight the importance of multielement analysis and multivariate statistical interpretation of sediment geochemical data in inferring the nature of the underlying primary mineralization in any region.
基金supported by National High Technology Research and Development Program of China (863 Program)(No. 2009AA04Z162)National Nature Science Foundation of China(No. 60825302, No. 60934007, No. 61074061)+1 种基金Program of Shanghai Subject Chief Scientist,"Shu Guang" project supported by Shang-hai Municipal Education Commission and Shanghai Education Development FoundationKey Project of Shanghai Science and Technology Commission, China (No. 10JC1403400)
文摘In this paper, a low-dimensional multiple-input and multiple-output (MIMO) model predictive control (MPC) configuration is presented for partial differential equation (PDE) unknown spatially-distributed systems (SDSs). First, the dimension reduction with principal component analysis (PCA) is used to transform the high-dimensional spatio-temporal data into a low-dimensional time domain. The MPC strategy is proposed based on the online correction low-dimensional models, where the state of the system at a previous time is used to correct the output of low-dimensional models. Sufficient conditions for closed-loop stability are presented and proven. Simulations demonstrate the accuracy and efficiency of the proposed methodologies.
基金Project supported by the National High Technology Research and Development Program of China(Grant No.2013AA030901)the Fundamental Research Funds for the Central Universities,China(Grant No.FRF-TP-14-120A2)
文摘This paper presents a new pattern recognition system for Chinese spirit identification by using the polymer quartz piezoelectric crystal sensor based e-nose. The sensors are designed based on quartz crystal microbalance(QCM) principle,and they could capture different vibration frequency signal values for Chinese spirit identification. For each sensor in an8-channel sensor array, seven characteristic values of the original vibration frequency signal values, i.e., average value(A),root-mean-square value(RMS), shape factor value(S_f), crest factor value(C_f), impulse factor value(I_f), clearance factor value(CL_f), kurtosis factor value(K_v) are first extracted. Then the dimension of the characteristic values is reduced by the principle components analysis(PCA) method. Finally the back propagation(BP) neutral network algorithm is used to recognize Chinese spirits. The experimental results show that the recognition rate of six kinds of Chinese spirits is 93.33% and our proposed new pattern recognition system can identify Chinese spirits effectively.
基金supported by the project TRA2014-58263-C2-2-Rfunded by the National Research program of Spain
文摘Probability of detection(POD)graphics allow for a change from qualitative to quantitative assessment for every damage detection system,and as such it is a main request for conventional non-destructive testing(NDT)techniques.Its availability can greatly help towards the industrialization of the corresponding Structural health monitoring(SHM)system.But having in mind that for SHM systems the sensors are at fixed positions,and the location of a potential damage would change its detectability.Consequently robust simulation tools are required to obtain the model assisted probability of detection(MAPOD)which is needed to validate the SHM system.This tool may also help for the optimization of the sensor distribution,and finally will allow a probabilistic risk management.INDEUS,simulation of ultrasonic waves SHM system,was a main milestone in this direction.This article deals with the simulation tools for a strain based SHM system,using fiber optic sensors(FOS).FOS are essentially strain/temperature sensors,either with multi-point or with distributed sensing.The simulation tool includes the finite element model(FEM)for the original and damaged structure,and algorithms to compare the strain data at the pre-established sensors locations,and from this comparison to extract information about damage occurrence and location.The study has been applied to the structure of an all-composite unmanned aircraft vehicle(UAV)now under construction,designed at Universidad Politecnica de Madrid for the inspection of electrical utilities networks.Distributed sensing optical fibers were internally bonded at the fuselage and wing.Routine inspection is planned to be done with the aircraft at the test bench by imposing known loads.From the acquired strain data,damage occurrence may be calculated as slight deviations from the baselines.This is a fast inspection procedure without requiring trained specialists,and it would allow for detection of hidden damages.Simulation indicates that stringer partial debondings are detected before they become critical,while small delaminations as those produced by barely visible impact damages would require a prohibited number of sensing lines.These simulation tools may easily be applied to any other complex structure,just by changing the FEM models.From these results it is shown how a fiber optic based SHM system may be used as a reliable damage detection procedure.
文摘A weather-adaptive forward collision warning (FCW) system was presented by applying local features for vehicle detection and global features for vehicle verification. In the system, horizontal and vertical edge maps are separately calculated. Then edge maps are threshold by an adaptive threshold value to adapt the brightness variation. Third, the edge points are linked to generate possible objects. Fourth, the objects are judged based on edge response, location, and symmetry to generate vehicle candidates. At last, a method based on the principal component analysis (PCA) is proposed to verify the vehicle candidates. The proposed FCW system has the following properties: 1) the edge extraction is adaptive to various lighting condition;2) the local features are mutually processed to improve the reliability of vehicle detection;3) the hierarchical schemes of vehicle detection enhance the adaptability to various weather conditions;4) the PCA-based verification can strictly eliminate the candidate regions without vehicle appearance.