针对L波段数字航空通信系统(L-band digital aeronautic communication system,LDACS)可用频谱资源有限且易受大功率测距仪(distance measuring equipment,DME)信号干扰的问题,提出一种基于降维循环谱和残差神经网络的频谱感知方法。首...针对L波段数字航空通信系统(L-band digital aeronautic communication system,LDACS)可用频谱资源有限且易受大功率测距仪(distance measuring equipment,DME)信号干扰的问题,提出一种基于降维循环谱和残差神经网络的频谱感知方法。首先理论推导分析了DME信号的循环谱特征;然后利用Fisher判别率(Fisher discriminant rate,FDR)提取循环频率能量最大的向量,通过主成分分析(principal component analysis,PCA)进行预处理特征增强;最后给出数据处理后的循环谱向量与卷积神经网络相结合的实现过程,实现了DME信号的有效检测。仿真结果表明,该方法对噪声不敏感,当信噪比不低于-15 dB时,平均检测概率大于90%。当信噪比不低于-14 dB,检测概率接近100%。展开更多
针对测距仪(distance measure equipment,DME)信号严重干扰L频段数字航空通信系统(L-band digital aviation communication system,L-DACS)前向链路接收机的问题,提出基于相关稀疏变分贝叶斯(correlated sparse variational Bayesian,cS...针对测距仪(distance measure equipment,DME)信号严重干扰L频段数字航空通信系统(L-band digital aviation communication system,L-DACS)前向链路接收机的问题,提出基于相关稀疏变分贝叶斯(correlated sparse variational Bayesian,cSVB)算法的DME脉冲干扰抑制方法。所提方法利用L-DACS系统正交频分复用(orthogonal frequency division multiplexing,OFDM)接收机的空子载波信息构建接收信号的压缩感知方程;然后,根据cSVB算法进行三层次贝叶斯信号建模,最后选择了两种变体算法重构DME干扰信号,并将其从时域接收信号中去除。理论分析与仿真结果表明,所提出的干扰抑制方法可以充分利用信号先验信息,进一步降低DME干扰信号估计的归一化均方误差,有效改善L-DACS系统的误码性能,提高传输可靠性。展开更多
文摘针对测距仪(distance measure equipment,DME)信号严重干扰L频段数字航空通信系统(L-band digital aviation communication system,L-DACS)前向链路接收机的问题,提出基于相关稀疏变分贝叶斯(correlated sparse variational Bayesian,cSVB)算法的DME脉冲干扰抑制方法。所提方法利用L-DACS系统正交频分复用(orthogonal frequency division multiplexing,OFDM)接收机的空子载波信息构建接收信号的压缩感知方程;然后,根据cSVB算法进行三层次贝叶斯信号建模,最后选择了两种变体算法重构DME干扰信号,并将其从时域接收信号中去除。理论分析与仿真结果表明,所提出的干扰抑制方法可以充分利用信号先验信息,进一步降低DME干扰信号估计的归一化均方误差,有效改善L-DACS系统的误码性能,提高传输可靠性。