The services sector employs a large and growing proportion of workers in the industrialized nations, and it is increasingly dependent on information and communication technologies. While the interdependences, similari...The services sector employs a large and growing proportion of workers in the industrialized nations, and it is increasingly dependent on information and communication technologies. While the interdependences, similarities and complementarities of manufacturing and services are significant, there are considerable differences between goods and services, including the shift in focus from mass production to mass customization (whereby a service is produced and delivered in response to a customer's stated or imputed needs). In general, services can be considered to be knowledge-intensive agents or components which work together as providers and consumers to create or co-produce value. Like manufacturing systems, an efficient service system must be an integrated system of systems, leading to greater connectivity and interdependence. Integration must occur over the physical, temporal, organizational and functional dimensions, and must include methods concerned with the component, the management, and the system. Moreover, an effective service system must also be an adaptable system, leading to greater value and responsiveness. Adaptation must occur over the dimensions of monitoring, feedback, cybernetics and learning, and must include methods concerned with space, time, and system. In sum, service systems are indeed complex, especially due to the uncertainties associated with the human-centered aspects of such systems. Moreover, the system complexities can only be dealt with methods that enhance system integration and adaptation. The paper concludes with several insights, including a plea to shift the current misplaced focus on developing a science or discipline for services to further developing a systems engineering approach to services, an approach based on the integration and adaptation of a host of sciences or disciplines (e.g., physics, mathematics, statistics, psychology, sociology, etc.). In fact, what is required is a services-related transdisciplinary - beyond a single disciplinary - ontology or taxonomy as a basis for disciplinary integration and adaptation.展开更多
Healthcare is indeed a complex service system, one requiring the technobiology approach of systems engineering to underpin its development as an integrated and adaptive system. In general, healthcare services are carr...Healthcare is indeed a complex service system, one requiring the technobiology approach of systems engineering to underpin its development as an integrated and adaptive system. In general, healthcare services are carried out with knowledge-intensive agents or components which work together as providers and consumers to create or co-produce value. Indeed, the engineering design of a healthcare system must recognize the fact that it is actually a complex integration of human-centered activities that is increasingly dependent on information technology and knowledge. Like any service system, healthcare can be considered to be a combination or recombination of three essential components - people (characterized by behaviors, values, knowledge, etc.), processes (characterized by collaboration, customization, etc.) and products (characterized by software, hardware, infrastructures, etc.). Thus, a healthcare system is an integrated and adaptive set of people, processes and products. It is, in essence, a system of systems which objectives are to enhance its efficiency (leading to greater interdependency) and effectiveness (leading to improved health). Integration occurs over the physical, temporal, organizational and functional dimensions, while adaptation occurs over the monitoring, feedback, cybernetic and learning dimensions. In sum, such service systems as healthcare are indeed complex, especially due to the uncertainties associated with the human-centered aspects of these systems. Moreover, the system complexities can only be dealt with methods that enhance system integration and adaptation.展开更多
文摘The services sector employs a large and growing proportion of workers in the industrialized nations, and it is increasingly dependent on information and communication technologies. While the interdependences, similarities and complementarities of manufacturing and services are significant, there are considerable differences between goods and services, including the shift in focus from mass production to mass customization (whereby a service is produced and delivered in response to a customer's stated or imputed needs). In general, services can be considered to be knowledge-intensive agents or components which work together as providers and consumers to create or co-produce value. Like manufacturing systems, an efficient service system must be an integrated system of systems, leading to greater connectivity and interdependence. Integration must occur over the physical, temporal, organizational and functional dimensions, and must include methods concerned with the component, the management, and the system. Moreover, an effective service system must also be an adaptable system, leading to greater value and responsiveness. Adaptation must occur over the dimensions of monitoring, feedback, cybernetics and learning, and must include methods concerned with space, time, and system. In sum, service systems are indeed complex, especially due to the uncertainties associated with the human-centered aspects of such systems. Moreover, the system complexities can only be dealt with methods that enhance system integration and adaptation. The paper concludes with several insights, including a plea to shift the current misplaced focus on developing a science or discipline for services to further developing a systems engineering approach to services, an approach based on the integration and adaptation of a host of sciences or disciplines (e.g., physics, mathematics, statistics, psychology, sociology, etc.). In fact, what is required is a services-related transdisciplinary - beyond a single disciplinary - ontology or taxonomy as a basis for disciplinary integration and adaptation.
文摘Healthcare is indeed a complex service system, one requiring the technobiology approach of systems engineering to underpin its development as an integrated and adaptive system. In general, healthcare services are carried out with knowledge-intensive agents or components which work together as providers and consumers to create or co-produce value. Indeed, the engineering design of a healthcare system must recognize the fact that it is actually a complex integration of human-centered activities that is increasingly dependent on information technology and knowledge. Like any service system, healthcare can be considered to be a combination or recombination of three essential components - people (characterized by behaviors, values, knowledge, etc.), processes (characterized by collaboration, customization, etc.) and products (characterized by software, hardware, infrastructures, etc.). Thus, a healthcare system is an integrated and adaptive set of people, processes and products. It is, in essence, a system of systems which objectives are to enhance its efficiency (leading to greater interdependency) and effectiveness (leading to improved health). Integration occurs over the physical, temporal, organizational and functional dimensions, while adaptation occurs over the monitoring, feedback, cybernetic and learning dimensions. In sum, such service systems as healthcare are indeed complex, especially due to the uncertainties associated with the human-centered aspects of these systems. Moreover, the system complexities can only be dealt with methods that enhance system integration and adaptation.