The occurrence of twin-arginine motifs (-R-R-) in the amino acid sequences of animal pro-proteins frequently defines the cleavage site(s) for their structural/functional maturation. No information is available on ...The occurrence of twin-arginine motifs (-R-R-) in the amino acid sequences of animal pro-proteins frequently defines the cleavage site(s) for their structural/functional maturation. No information is available on the presence and possible biological meaning of these motifs in the seed storage proteins. In this work, a novel endopeptidase activity with cleavage specificity to twin-arginine pairs has been detected in mature dry Lupinus albus seeds. The endopeptidase was tested with a number of endogenous and exogenous protein substrates, which were selected according to the pres- ence of one or more twin-arginine residue motifs in their amino acid sequences. The observed hydrolysis patterns were limited and highly specific. Partial proteolysis led to stable polypeptide fragments that were characterized by 1- and 2-D electrophoresis. Selected polypeptides were submitted to N-terminal amino acid sequencing and mass spectrometry anal- yses, These approaches, supported by bioinformatic analysis of the available sequences, allowed the conclusion that the polypeptide cleavage events had occurred at the peptide bonds comprised between twin-arginine residue pairs with all tested protein substrates. The endopeptidase activity was inhibited by 4-(2-AminoEthyl)Benzene-Sulphonyl Fluoride hy- drochloride (AEBSF), leupeptin, and serine proteinase protein inhibitors, while it was not affected by pepstatin, trans- EpoxysuccinyI-L-leucylamido(4-guanidino)butane (E64), and ethylenediaminetetraacetic acid (EDTA), thus qualifying the Arg-Arg cleaving enzyme as a serine endopeptidase. The structural features of storage proteins from lupin and other legume seeds strongly support the hypothesis that the occurrence of an endopeptidase activity cleaving -R-R- bonds may be functional to facilitate their degradation at germination and possibly generate polypeptide fragments with specific biological activity.展开更多
文摘The occurrence of twin-arginine motifs (-R-R-) in the amino acid sequences of animal pro-proteins frequently defines the cleavage site(s) for their structural/functional maturation. No information is available on the presence and possible biological meaning of these motifs in the seed storage proteins. In this work, a novel endopeptidase activity with cleavage specificity to twin-arginine pairs has been detected in mature dry Lupinus albus seeds. The endopeptidase was tested with a number of endogenous and exogenous protein substrates, which were selected according to the pres- ence of one or more twin-arginine residue motifs in their amino acid sequences. The observed hydrolysis patterns were limited and highly specific. Partial proteolysis led to stable polypeptide fragments that were characterized by 1- and 2-D electrophoresis. Selected polypeptides were submitted to N-terminal amino acid sequencing and mass spectrometry anal- yses, These approaches, supported by bioinformatic analysis of the available sequences, allowed the conclusion that the polypeptide cleavage events had occurred at the peptide bonds comprised between twin-arginine residue pairs with all tested protein substrates. The endopeptidase activity was inhibited by 4-(2-AminoEthyl)Benzene-Sulphonyl Fluoride hy- drochloride (AEBSF), leupeptin, and serine proteinase protein inhibitors, while it was not affected by pepstatin, trans- EpoxysuccinyI-L-leucylamido(4-guanidino)butane (E64), and ethylenediaminetetraacetic acid (EDTA), thus qualifying the Arg-Arg cleaving enzyme as a serine endopeptidase. The structural features of storage proteins from lupin and other legume seeds strongly support the hypothesis that the occurrence of an endopeptidase activity cleaving -R-R- bonds may be functional to facilitate their degradation at germination and possibly generate polypeptide fragments with specific biological activity.