Fault detection and reconstruction of actuator faults for uncertain descriptor linear system based on a sliding mode observer was considered. The design algorithms of sliding mode observer for linear descriptor system...Fault detection and reconstruction of actuator faults for uncertain descriptor linear system based on a sliding mode observer was considered. The design algorithms of sliding mode observer for linear descriptor systems with faults and uncertain were given. The method uses H∞ concepts to design the observer gain such that L2 gain from the uncertainty to reconstruction error of fault was minimized.展开更多
In the background of the design and construction of Smart Grid Operation Supporting System for District Power Networks, this paper established the weighted fault probability model of the overhead line which is based o...In the background of the design and construction of Smart Grid Operation Supporting System for District Power Networks, this paper established the weighted fault probability model of the overhead line which is based on equipment operating status, utility theory and fuzzy theory. In this model, the proper membership function is adopted to describe the influence of lightning, wind speed, line ice and temperature, and the outage rate of overhead line, derived from historical statistics, is amended. Based on this model, the power supply risk analysis software is developed to calculate the online risk indicators of district grid, and provide real-time decision support information based on risk theory for scheduling operations personnel.展开更多
This paper presents, tests and compares three earthing systems (TT, TN and IT) for Micro-Grid (MG) protection against various fault types during the connected mode. The main contribution of this work is including the ...This paper presents, tests and compares three earthing systems (TT, TN and IT) for Micro-Grid (MG) protection against various fault types during the connected mode. The main contribution of this work is including the models of all the micro sources which interfaced to the MG by power electronic inverters. Inverters in turns are provided with current limiters and this also included in the inverter models to exactly simulate the real situation in the MG during fault times. Results proved that the most suitable earthing system for MG protection during the connecting mode is the TN earthing system. That system leads to a suitable amount of fault current sufficient to activate over current protection relays. With using TN system, Touch voltages at the faulted bus and all other consumer’s buses are less than the safety limited value if current limiter is included with the transformer of the main grid which connects MG. For the two others earthing systems (TT and IT), fault current is small and nearly equal to the over load current which make over current protection relay can not differentiate between fault current and overload current. All models of micro sources, earthing systems, inverters, main grid and control schemes are built using Matlab?/Simulink? environment.展开更多
This paper presents a Fault Mode Probability Factor(FMPF) based Fault-Tolerant Control(FTC) strategy for multiple faults of Dissimilar Redundant Actuation System(DRAS)composed of Hydraulic Actuator(HA) and Ele...This paper presents a Fault Mode Probability Factor(FMPF) based Fault-Tolerant Control(FTC) strategy for multiple faults of Dissimilar Redundant Actuation System(DRAS)composed of Hydraulic Actuator(HA) and Electro-Hydrostatic Actuator(EHA). The long-term service and severe working conditions can result in multiple gradual faults which can ultimately degrade the system performance, resulting in the system model drift into the fault state characterized with parameter uncertainty. The paper proposes to address this problem by using the historical statistics of the multiple gradual faults and the proposed FMPF to amend the system model with parameter uncertainty. To balance the system model precision and computation time, a Moving Window(MW) method is used to determine the applied historical statistics. The FMPF based FTC strategy is developed for the amended system model where the system estimation and Linear Quadratic Regulator(LQR) are updated at the end of system sampling period. The simulations of DRAS system subjected to multiple faults have been performed and the results indicate the effectiveness of the proposed approach.展开更多
In this paper, an adaptive type-2 fuzzy sliding mode control to tolerate actuator faults of unknown nonlinear systems with external disturbances is presented. Based on a redundant actuation structure, a novel type-2 a...In this paper, an adaptive type-2 fuzzy sliding mode control to tolerate actuator faults of unknown nonlinear systems with external disturbances is presented. Based on a redundant actuation structure, a novel type-2 adaptive fuzzy fault tolerant control scheme is proposed using sliding mode control. Two adaptive type-2 fuzzy logic systems are used to approximate the unknown functions, whose adaptation laws are deduced from the stability analysis. The proposed approach allows to ensure good tracking performance despite the presence of actuator failures and external disturbances, as illustrated through a simulation example.展开更多
为了提高大型锂电池储能系统的安全性和可靠性,提出了一种基于荷电状态(State of Charge,SOC)的自动切换状态方法,并结合理想开关模块的电流突变检测功能,实现对锂电池储能系统的安全管理与故障预防。在高、低荷电状态下,系统能够根据SO...为了提高大型锂电池储能系统的安全性和可靠性,提出了一种基于荷电状态(State of Charge,SOC)的自动切换状态方法,并结合理想开关模块的电流突变检测功能,实现对锂电池储能系统的安全管理与故障预防。在高、低荷电状态下,系统能够根据SOC值动态切换充放电模式,并在出现突发故障时迅速隔离故障电路,确保锂电池继续为负载电路供电。仿真验证了该设计方案能够在各种工作状态下及时识别故障,快速恢复锂电池储能系统的稳定运行。展开更多
文摘Fault detection and reconstruction of actuator faults for uncertain descriptor linear system based on a sliding mode observer was considered. The design algorithms of sliding mode observer for linear descriptor systems with faults and uncertain were given. The method uses H∞ concepts to design the observer gain such that L2 gain from the uncertainty to reconstruction error of fault was minimized.
文摘In the background of the design and construction of Smart Grid Operation Supporting System for District Power Networks, this paper established the weighted fault probability model of the overhead line which is based on equipment operating status, utility theory and fuzzy theory. In this model, the proper membership function is adopted to describe the influence of lightning, wind speed, line ice and temperature, and the outage rate of overhead line, derived from historical statistics, is amended. Based on this model, the power supply risk analysis software is developed to calculate the online risk indicators of district grid, and provide real-time decision support information based on risk theory for scheduling operations personnel.
基金Supported by National Natural Science Foundation of P. R. China (60574083), Key Laboratory of Process Industry Automation, State Education Ministry of China (PAL200514)
文摘This paper presents, tests and compares three earthing systems (TT, TN and IT) for Micro-Grid (MG) protection against various fault types during the connected mode. The main contribution of this work is including the models of all the micro sources which interfaced to the MG by power electronic inverters. Inverters in turns are provided with current limiters and this also included in the inverter models to exactly simulate the real situation in the MG during fault times. Results proved that the most suitable earthing system for MG protection during the connecting mode is the TN earthing system. That system leads to a suitable amount of fault current sufficient to activate over current protection relays. With using TN system, Touch voltages at the faulted bus and all other consumer’s buses are less than the safety limited value if current limiter is included with the transformer of the main grid which connects MG. For the two others earthing systems (TT and IT), fault current is small and nearly equal to the over load current which make over current protection relay can not differentiate between fault current and overload current. All models of micro sources, earthing systems, inverters, main grid and control schemes are built using Matlab?/Simulink? environment.
基金co-supported by the National Natural Science Foundation of China(Nos.51620105010,51675019 and 51575019)the National Basic Research Program of China(No.2014CB046402)+1 种基金the Fundamental Research Funds for the Central Universities of China(YWF-17-BJ-Y-105)the "111" Project of China
文摘This paper presents a Fault Mode Probability Factor(FMPF) based Fault-Tolerant Control(FTC) strategy for multiple faults of Dissimilar Redundant Actuation System(DRAS)composed of Hydraulic Actuator(HA) and Electro-Hydrostatic Actuator(EHA). The long-term service and severe working conditions can result in multiple gradual faults which can ultimately degrade the system performance, resulting in the system model drift into the fault state characterized with parameter uncertainty. The paper proposes to address this problem by using the historical statistics of the multiple gradual faults and the proposed FMPF to amend the system model with parameter uncertainty. To balance the system model precision and computation time, a Moving Window(MW) method is used to determine the applied historical statistics. The FMPF based FTC strategy is developed for the amended system model where the system estimation and Linear Quadratic Regulator(LQR) are updated at the end of system sampling period. The simulations of DRAS system subjected to multiple faults have been performed and the results indicate the effectiveness of the proposed approach.
基金supported by Region of Champagne Ardenne and European Regional Development Fund CPER-MOSYP
文摘In this paper, an adaptive type-2 fuzzy sliding mode control to tolerate actuator faults of unknown nonlinear systems with external disturbances is presented. Based on a redundant actuation structure, a novel type-2 adaptive fuzzy fault tolerant control scheme is proposed using sliding mode control. Two adaptive type-2 fuzzy logic systems are used to approximate the unknown functions, whose adaptation laws are deduced from the stability analysis. The proposed approach allows to ensure good tracking performance despite the presence of actuator failures and external disturbances, as illustrated through a simulation example.
文摘为了提高大型锂电池储能系统的安全性和可靠性,提出了一种基于荷电状态(State of Charge,SOC)的自动切换状态方法,并结合理想开关模块的电流突变检测功能,实现对锂电池储能系统的安全管理与故障预防。在高、低荷电状态下,系统能够根据SOC值动态切换充放电模式,并在出现突发故障时迅速隔离故障电路,确保锂电池继续为负载电路供电。仿真验证了该设计方案能够在各种工作状态下及时识别故障,快速恢复锂电池储能系统的稳定运行。