In this paper,the mission and the thermal environment of the Solar Close Observations and Proximity Experiments(SCOPE)spacecraft are analyzed,and an advanced thermal management system(ATMS)is designed for it.The relat...In this paper,the mission and the thermal environment of the Solar Close Observations and Proximity Experiments(SCOPE)spacecraft are analyzed,and an advanced thermal management system(ATMS)is designed for it.The relationship and functions of the integrated database,the intelligent thermal control system and the efficient liquid cooling system in the ATMS are elaborated upon.For the complex thermal field regulation system and extreme space thermal environment,a modular simulation and thermal field planning method are proposed,and the feasibility of the planning algorithm is verified by numerical simulation.A solar array liquid cooling system is developed,and the system simulation results indicate that the temperatures of the solar arrays meet the requirements as the spacecraft flies by perihelion and aphelion.The advanced thermal management study supports the development of the SCOPE program and provides a reference for the thermal management in other deep-space exploration programs.展开更多
The transition to sustainable energy systems is one of the defining challenges of our time, necessitating innovations in how we generate, distribute, and manage electrical power. Micro-grids, as localized energy hubs,...The transition to sustainable energy systems is one of the defining challenges of our time, necessitating innovations in how we generate, distribute, and manage electrical power. Micro-grids, as localized energy hubs, have emerged as a promising solution to integrate renewable energy sources, ensure energy security, and improve system resilience. The Autonomous multi-factor Energy Flow Controller (AmEFC) introduced in this paper addresses this need by offering a scalable, adaptable, and resilient framework for energy management within an on-grid micro-grid context. The urgency for such a system is predicated on the increasing volatility and unpredictability in energy landscapes, including fluctuating renewable outputs and changing load demands. To tackle these challenges, the AmEFC prototype incorporates a novel hierarchical control structure that leverages Renewable Energy Sources (RES), such as photovoltaic systems, wind turbines, and hydro pumps, alongside a sophisticated Battery Management System (BMS). Its prime objective is to maintain an uninterrupted power supply to critical loads, efficiently balance energy surplus through hydraulic storage, and ensure robust interaction with the main grid. A comprehensive Simulink model is developed to validate the functionality of the AmEFC, simulating real-world conditions and dynamic interactions among the components. The model assesses the system’s reliability in consistently powering critical loads and its efficacy in managing surplus energy. The inclusion of advanced predictive algorithms enables the AmEFC to anticipate energy production and consumption trends, integrating weather forecasting and inter-controller communication to optimize energy flow within and across micro-grids. This study’s significance lies in its potential to facilitate the seamless incorporation of RES into existing power systems, thus propelling the energy sector towards a more sustainable, autonomous, and resilient future. The results underscore the potential of such a system to revolutionize energy management practices and highlight the importance of smart controller systems in the era of smart grids.展开更多
The introduction of several small and large-scale industries,malls,shopping complexes,and domestic applications has significantly increased energy consumption.The aim of the work is to simulate a technically viable an...The introduction of several small and large-scale industries,malls,shopping complexes,and domestic applications has significantly increased energy consumption.The aim of the work is to simulate a technically viable and economically optimum hybrid power system for residential buildings.The proposed micro-grid model includes four power generators:solar power,wind power,Electricity Board(EB)source,and a Diesel Generator(DG)set,with solar and wind power performing as major sources and the EB supply and DG set serving as backup sources.The core issue in direct current to alternate current conversion is harmonics distortion,a five-stage multilevel inverter is employed with the assistance of an intelligent control system is simulated and the optimum system configuration is estimated to reduce harmonics and improve the power quality.The monthly demand for residential buildings is 13-15 Megawatts.So,almost 433 Kilo-Watts(KW)of electricity is required every day,and if it is used for 8 h per day,50-60 KW of electricity is needed per hour.The overall micro-grid model’s operation and performance are established using MATLAB/SIMULINK software,and simulation results are provided.The simulation results show that the developed system is both cost-effective and environment friendly resulting in yearly cost reductions.展开更多
Building Energy Management Systems(BEMS)are computer-based systems that aid in managing,controlling,and monitoring the building technical services and energy consumption by equipment used in the building.The effective...Building Energy Management Systems(BEMS)are computer-based systems that aid in managing,controlling,and monitoring the building technical services and energy consumption by equipment used in the building.The effectiveness of BEMS is dependent upon numerous factors,among which the operational characteristics of the building and the BEMS control parameters also play an essential role.This research develops a user-driven simulation tool where users can input the building parameters and BEMS controls to determine the effectiveness of their BEMS.The simulation tool gives the user the flexibility to understand the potential energy savings by employing specific BEMS control and help in making intelligent decisions.The simulation is developed using Visual Basic Application(VBA)in Microsoft Excel,based on discrete-event Monte Carlo Simulation(MCS).The simulation works by initially calculating the energy required for space cooling and heating based on current building parameters input by the user in the model.Further,during the second simulation,the user selects all the BEMS controls and improved building envelope to determine the energy required for space cooling and heating during that case.The model compares the energy consumption from the first simulation and the second simulation.Then the simulation model will provide the rating of the effectiveness of BEMS on a continuous scale of 1 to 5(1 being poor effectiveness and 5 being excellent effectiveness of BEMS).This work is intended to facilitate building owner/energy managers to analyze the building energy performance concerning the efficacy of their energy management system.展开更多
The construction of relevant standards for building carbon emission assessment in China has just started,and the quantitative analysis method and evaluation system are still imperfect,which hinders the development of ...The construction of relevant standards for building carbon emission assessment in China has just started,and the quantitative analysis method and evaluation system are still imperfect,which hinders the development of low-carbon building design.Therefore,the use of intelligent energy management system is very necessary.The purpose of this paper is to explore the design optimization of low-carbon buildings based on intelligent energy management systems.Based on the proposed quantitative method of building carbon emission,this paper establishes the quota theoretical system of building carbon emission analysis,and develops the quota based carbon emission calculation software.Smart energy management system is a low-carbon energy-saving system based on the reference of large-scale building energy-saving system and combined with energy consumption.It provides a fast and effective calculation tool for the quantitative evaluation of carbon emission of construction projects,so as to realize the carbon emission control and optimization in the early stage of architectural design and construction.On this basis,the evaluation,analysis and calculation method of building structure based on carbon reduction target is proposed,combined with the carbon emission quota management standard proposed in this paper.Taking small high-rise residential buildings as an example,this paper compares and analyzes different building structural systems from the perspectives of structural performance,economy and carbon emission level.It provides a reference for the design and evaluation of low-carbon building structures.The smart energy management system collects user energy use parameters.It uses time period and time sequence to obtain a large amount of data for analysis and integration,which provides users with intuitive energy consumption data.Compared with the traditional architectural design method,the industrialized construction method can save 589.22 megajoules(MJ)per square meter.Based on 29270 megajoules(MJ)per ton of standard coal,the construction area of the case is about 8000 m2,and the energy saving of residential buildings is 161.04 tons of standard coal.This research is of great significance in reducing the carbon emission intensity of buildings.展开更多
In view of class imbalance in data-driven modeling for Prognostics and Health Management(PHM),existing classification methods may fail in generating effective fault prediction models for the on-board high-speed train ...In view of class imbalance in data-driven modeling for Prognostics and Health Management(PHM),existing classification methods may fail in generating effective fault prediction models for the on-board high-speed train control equipment.A virtual sample generation solution based on Generative Adversarial Network(GAN)is proposed to overcome this shortcoming.Aiming at augmenting the sample classes with the imbalanced data problem,the GAN-based virtual sample generation strategy is embedded into the establishment of fault prediction models.Under the PHM framework of the on-board train control system,the virtual sample generation principle and the detailed procedures are presented.With the enhanced class-balancing mechanism and the designed sample augmentation logic,the PHM scheme of the on-board train control equipment has powerful data condition adaptability and can effectively predict the fault probability and life cycle status.Practical data from a specific type of on-board train control system is employed for the validation of the presented solution.The comparative results indicate that GAN-based sample augmentation is capable of achieving a desirable sample balancing level and enhancing the performance of correspondingly derived fault prediction models for the Condition-based Maintenance(CBM)operations.展开更多
The Ghana Research Reactor-1 (GHARR-1) is a 34 kW low enriched uranium (LEU) Miniature Neutron Source Reactor (MNSR), tank-in-pool type and cooled by natural circulation under atmospheric pressure operating conditions...The Ghana Research Reactor-1 (GHARR-1) is a 34 kW low enriched uranium (LEU) Miniature Neutron Source Reactor (MNSR), tank-in-pool type and cooled by natural circulation under atmospheric pressure operating conditions. GHARR-1 is owned by Ghana Atomic Energy Commission (GAEC) and operated by National Nuclear Research Institute (NNRI), one of the institutes of GAEC. GHARR-1 is housed by Nuclear Reactors Research Centre (NRRC), one of the Centres of NNRI. Management/Administration, Radiation protection, Reactor operation and maintenance, Reactor utilization and Physical protection are the various systems/units that integrate to manage the activities of operation and utilization of GHARR-1 in addition to the quality assurance and quality control management system of the research reactor facility. The GHARR-1 which is currently in operation follows a robust maintenance culture adopted by the management system and this has made it possible to keep the reactor in operation with minimal interruption. The management system activities adopted at the Centre to ensure safety of the workers, public and the research reactor facility include authorization of the operation of the reactor for any experiments/modifications;providing material and financial resources for maintaining the research reactor facility;following standard procedures while carrying out Neutron Activation Analysis;participation in IAEA proficiency test;irradiation sites/positions characterization;following standard procedures while carrying out reactor operation and maintenance including reactor and pool water purification and other related activities;monitoring radiation levels in the controlled, supervised and uncontrolled areas of the research reactor facility as well as during reactor operation and maintenance;controlling the physical entry of the workers and public into the research reactor facility;and ensuring that the security structures provided to protect the reactor facility are functioning properly. The thorough knowledge on the functions of the various components that make up the electrical/electronic and control systems of the reactor has been observed to be important for continuous successful maintenance of the research reactor to keep the reactor in operation. This work provides some management system activities adopted to monitor the activities of the research reactor operation and utilization to guarantee safety of workers, public and the environment as well as to safeguard a continuous operation of the research reactor. These management system activities adopted among others, are in the form of Monitoring Forms provided for monitoring the activities of the research reactor operation and utilization in order to ensure standard procedures and specifications are followed and quality services are rendered to the public.展开更多
Objective:To explore the role of specialized group management in the quality control of perioperative nursing.Methods:45 surgical nurses from our hospital were selected as the research subjects.Traditional operating r...Objective:To explore the role of specialized group management in the quality control of perioperative nursing.Methods:45 surgical nurses from our hospital were selected as the research subjects.Traditional operating room management was adopted from July 2019 to June 2020,and specialized group management was adopted from July 2020 to June 2021.The surgeon’s satisfaction,surgical nurses’core professional competence,and surgical patients’satisfaction were obtained through surveys and the results were analyzed.Results:Surgeon satisfaction before the implementation of specialized group management was significantly lower than after its implementation(P<0.05).Besides,surgical nurses’core professional competency scores before the implementation of specialized group management were significantly lower than after its implementation(P<0.05).Lastly,surgical patients’satisfaction before the implementation of specialized group management was significantly lower than after its implementation(P<0.05).Conclusion:Specialized group management helps to improve the quality of perioperative care and should be applied in clinical practice.展开更多
This paper presents an asynchronous output-feed-back control strategy of semi-Markovian systems via sliding mode-based learning technique.Compared with most literature results that require exact prior knowledge of sys...This paper presents an asynchronous output-feed-back control strategy of semi-Markovian systems via sliding mode-based learning technique.Compared with most literature results that require exact prior knowledge of system state and mode information,an asynchronous output-feedback sliding sur-face is adopted in the case of incompletely available state and non-synchronization phenomenon.The holonomic dynamics of the sliding mode are characterized by a descriptor system in which the switching surface is regarded as the fast subsystem and the system dynamics are viewed as the slow subsystem.Based upon the co-occurrence of two subsystems,the sufficient stochastic admissibility criterion of the holonomic dynamics is derived by utilizing the characteristics of cumulative distribution functions.Furthermore,a recursive learning controller is formulated to guarantee the reachability of the sliding manifold and realize the chattering reduction of the asynchronous switching and sliding motion.Finally,the proposed theoretical method is substantia-ted through two numerical simulations with the practical contin-uous stirred tank reactor and F-404 aircraft engine model,respectively.展开更多
The all-wheel drive(AWD)hybrid system is a research focus on high-performance new energy vehicles that can meet the demands of dynamic performance and passing ability.Simultaneous optimization of the power and economy...The all-wheel drive(AWD)hybrid system is a research focus on high-performance new energy vehicles that can meet the demands of dynamic performance and passing ability.Simultaneous optimization of the power and economy of hybrid vehicles becomes an issue.A unique multi-mode coupling(MMC)AWD hybrid system is presented to realize the distributed and centralized driving of the front and rear axles to achieve vectored distribution and full utilization of the system power between the axles of vehicles.Based on the parameters of the benchmarking model of a hybrid vehicle,the best model-predictive control-based energy management strategy is proposed.First,the drive system model was built after the analysis of the MMC-AWD’s drive modes.Next,three fundamental strategies were established to address power distribution adjustment and battery SOC maintenance when the SOC changed,which was followed by the design of a road driving force observer.Then,the energy consumption rate in the average time domain was processed before designing the minimum fuel consumption controller based on the equivalent fuel consumption coefficient.Finally,the advantage of the MMC-AWD was confirmed by comparison with the dynamic performance and economy of the BYD Song PLUS DMI-AWD.The findings indicate that,in comparison to the comparative hybrid system at road adhesion coefficients of 0.8 and 0.6,the MMC-AWD’s capacity to accelerate increases by 5.26%and 7.92%,respectively.When the road adhesion coefficient is 0.8,0.6,and 0.4,the maximum climbing ability increases by 14.22%,12.88%,and 4.55%,respectively.As a result,the dynamic performance is greatly enhanced,and the fuel savings rate per 100 km of mileage reaches 12.06%,which is also very economical.The proposed control strategies for the new hybrid AWD vehicle can optimize the power and economy simultaneously.展开更多
Objective:To evaluate the application value of a refined quality control management model for a sterilization supply center.Methods:A retrospective analysis was conducted on the work situation of the sterilization sup...Objective:To evaluate the application value of a refined quality control management model for a sterilization supply center.Methods:A retrospective analysis was conducted on the work situation of the sterilization supply center from January 2021 to January 2023.The work situation before January 31,2022,was classified as the control group;a routine quality control management model was implemented,and the work situation after January 31,2022,was classified as the observation group.The quality of medical device management and department satisfaction between the two groups were compared.Results:The timely recovery and supply rate,classification and cleaning pass rate,disinfection pass rate,packaging pass rate,sterilization pass rate,and department satisfaction score in the observation group were all higher than those of the control group(P<0.05).Conclusion:Implementing a refined quality control management model in the sterilization supply center can improve the quality management level of medical devices and department satisfaction and is worthy of promotion.展开更多
The global diabetes surge poses a critical public health challenge,emphasizing the need for effective glycemic control.However,rapid correction of chronic hyperglycemia can unexpectedly trigger microvascular complicat...The global diabetes surge poses a critical public health challenge,emphasizing the need for effective glycemic control.However,rapid correction of chronic hyperglycemia can unexpectedly trigger microvascular complications,necessitating a reevaluation of the speed and intensity of glycemic correction.Theories suggest swift blood sugar reductions may cause inflammation,oxidative stress,and neurovascular changes,resulting in complications.Healthcare providers should cautiously approach aggressive glycemic control,especially in long-standing,poorly controlled diabetes.Preventing and managing these complications requires a personalized,comprehensive approach with education,monitoring,and interdisciplinary care.Diabetes management must balance short and longterm goals,prioritizing overall well-being.This editorial underscores the need for a personalized,nuanced approach,focusing on equilibrium between glycemic control and avoiding overcorrection.展开更多
Hospitals are crucial healthcare facilities where patients seek treatment,and effective budget management within hospitals significantly impacts their operational efficiency and financial performance.In the age of inf...Hospitals are crucial healthcare facilities where patients seek treatment,and effective budget management within hospitals significantly impacts their operational efficiency and financial performance.In the age of information technology and advanced healthcare solutions,the emergence of smart hospitals represents a new trend in the medical industry’s evolution.Leveraging modern information technology can enhance the development of hospital IT systems and drive budget management toward greater intelligence.This paper begins by analyzing the influence of smart hospitals on hospital budget control.It then examines the current state of budget management control within smart hospitals.Finally,it proposes several strategies for budget management control in smart hospitals,aiming to provide guidance for relevant stakeholders.展开更多
The highway engineering process is complex,coupled with a relatively long construction period,hence requires increased coordination between participating units to prevent economic disputes and efficiency losses.The ma...The highway engineering process is complex,coupled with a relatively long construction period,hence requires increased coordination between participating units to prevent economic disputes and efficiency losses.The main body of the construction project needs to strengthen the management and control of funds.In this regard,this paper analyzes the importance of cost management in highway projects by clarifying and analyzing the current cost management status quo problems and causes.The highway engineering cost control strategy and implementation methods are summarized to provide references for improving the quality of highway engineering.展开更多
Objective: To explore the effect of evidence-based quality control circle (QCC) in improving the implementation rate of airway management measures in adult critically ill patients. Methods: Based on the Joanna Briggs ...Objective: To explore the effect of evidence-based quality control circle (QCC) in improving the implementation rate of airway management measures in adult critically ill patients. Methods: Based on the Joanna Briggs Institute (JBI) evidence-based health care model, the best evidence of airway management in adult critically ill patients was obtained and applied to the clinic. Results: The total implementation rate of airway management measures in adult critically ill patients increased from 23.62% before the implementation of quality control circle to 88.82%, and the pulmonary infection rate in critically ill patients decreased from 42.31% to 21.74%, with statistical significance between the two groups (P 0.05). Conclusion: Evidence-based quality control circle activities can standardize the practice standards of airway management in critically ill patients, reduce the occurrence of patients’ airway related complications, and improve clinical outcomes.展开更多
With the gradual acceleration of the urbanization process,the construction industry has been developing rapidly.As the key link to ensure the quality and safety of the project,construction management and construction ...With the gradual acceleration of the urbanization process,the construction industry has been developing rapidly.As the key link to ensure the quality and safety of the project,construction management and construction quality control are of great significance to enhance the competitiveness of construction enterprises and realize sustainable development.In this paper,the effective strategy of construction management and the effective strategy of construction quality control will be discussed in depth,aiming at providing useful management and quality control strategies for construction enterprises.展开更多
With the deepening of the“Belt and Road”initiative,Chinese enterprises are facing unprecedented opportunities and challenges for international cooperation.This paper mainly analyzes the current situation,existing pr...With the deepening of the“Belt and Road”initiative,Chinese enterprises are facing unprecedented opportunities and challenges for international cooperation.This paper mainly analyzes the current situation,existing problems,and coping strategies of enterprise international cooperation management in the context of the“Belt and Road”.This article expounds on the importance of the“Belt and Road”initiative for international cooperation of enterprises and analyzes the key links of international cooperation management of enterprises from the aspects of internationalization strategy,cross-cultural management,risk prevention and control,and resource integration.Finally,combined with the case,this paper puts forward the management strategies and suggestions that enterprises should adopt in international cooperation,to provide a useful reference for Chinese enterprises in international cooperation in the construction of the“Belt and Road.”展开更多
In modern enterprise management,strengthening the control and management of procurement processes can effectively reduce operational costs.However,with the continuous reform and improvement of China’s market economy ...In modern enterprise management,strengthening the control and management of procurement processes can effectively reduce operational costs.However,with the continuous reform and improvement of China’s market economy system,competition among supply chain enterprises has intensified.The traditional procurement management model is no longer able to meet the needs of enterprise development in the current era.As a result,procurement management based on supply chain management has emerged,offering significant improvements in the scientific management of procurement processes.It has become an important means of promoting the long-term development of enterprises.This paper primarily analyzes and studies procurement cost control based on supply chain management,providing insights for reference.展开更多
With the rapid development of the photovoltaic(PV)industry and policy support,photovoltaic engineering has attracted much attention as a clean energy project.However,the complexity and huge investment scale of photovo...With the rapid development of the photovoltaic(PV)industry and policy support,photovoltaic engineering has attracted much attention as a clean energy project.However,the complexity and huge investment scale of photovoltaic projects make cost management and cost control the key to project success.The purpose of this paper is to discuss the cost management and cost control strategies of photovoltaic projects,analyze their importance and challenges in the process of project implementation,and discuss the common cost control methods and techniques in photovoltaic projects,to improve cost management and cost control in photovoltaic projects,and to provide a reference for the sustainable development of the industry.展开更多
文摘In this paper,the mission and the thermal environment of the Solar Close Observations and Proximity Experiments(SCOPE)spacecraft are analyzed,and an advanced thermal management system(ATMS)is designed for it.The relationship and functions of the integrated database,the intelligent thermal control system and the efficient liquid cooling system in the ATMS are elaborated upon.For the complex thermal field regulation system and extreme space thermal environment,a modular simulation and thermal field planning method are proposed,and the feasibility of the planning algorithm is verified by numerical simulation.A solar array liquid cooling system is developed,and the system simulation results indicate that the temperatures of the solar arrays meet the requirements as the spacecraft flies by perihelion and aphelion.The advanced thermal management study supports the development of the SCOPE program and provides a reference for the thermal management in other deep-space exploration programs.
文摘The transition to sustainable energy systems is one of the defining challenges of our time, necessitating innovations in how we generate, distribute, and manage electrical power. Micro-grids, as localized energy hubs, have emerged as a promising solution to integrate renewable energy sources, ensure energy security, and improve system resilience. The Autonomous multi-factor Energy Flow Controller (AmEFC) introduced in this paper addresses this need by offering a scalable, adaptable, and resilient framework for energy management within an on-grid micro-grid context. The urgency for such a system is predicated on the increasing volatility and unpredictability in energy landscapes, including fluctuating renewable outputs and changing load demands. To tackle these challenges, the AmEFC prototype incorporates a novel hierarchical control structure that leverages Renewable Energy Sources (RES), such as photovoltaic systems, wind turbines, and hydro pumps, alongside a sophisticated Battery Management System (BMS). Its prime objective is to maintain an uninterrupted power supply to critical loads, efficiently balance energy surplus through hydraulic storage, and ensure robust interaction with the main grid. A comprehensive Simulink model is developed to validate the functionality of the AmEFC, simulating real-world conditions and dynamic interactions among the components. The model assesses the system’s reliability in consistently powering critical loads and its efficacy in managing surplus energy. The inclusion of advanced predictive algorithms enables the AmEFC to anticipate energy production and consumption trends, integrating weather forecasting and inter-controller communication to optimize energy flow within and across micro-grids. This study’s significance lies in its potential to facilitate the seamless incorporation of RES into existing power systems, thus propelling the energy sector towards a more sustainable, autonomous, and resilient future. The results underscore the potential of such a system to revolutionize energy management practices and highlight the importance of smart controller systems in the era of smart grids.
文摘The introduction of several small and large-scale industries,malls,shopping complexes,and domestic applications has significantly increased energy consumption.The aim of the work is to simulate a technically viable and economically optimum hybrid power system for residential buildings.The proposed micro-grid model includes four power generators:solar power,wind power,Electricity Board(EB)source,and a Diesel Generator(DG)set,with solar and wind power performing as major sources and the EB supply and DG set serving as backup sources.The core issue in direct current to alternate current conversion is harmonics distortion,a five-stage multilevel inverter is employed with the assistance of an intelligent control system is simulated and the optimum system configuration is estimated to reduce harmonics and improve the power quality.The monthly demand for residential buildings is 13-15 Megawatts.So,almost 433 Kilo-Watts(KW)of electricity is required every day,and if it is used for 8 h per day,50-60 KW of electricity is needed per hour.The overall micro-grid model’s operation and performance are established using MATLAB/SIMULINK software,and simulation results are provided.The simulation results show that the developed system is both cost-effective and environment friendly resulting in yearly cost reductions.
基金The first three authors who conducted this research were partly funded by the Industrial Assessment Center Project,supported by grants from the US Department of Energy and by the West Virginia Development Office.
文摘Building Energy Management Systems(BEMS)are computer-based systems that aid in managing,controlling,and monitoring the building technical services and energy consumption by equipment used in the building.The effectiveness of BEMS is dependent upon numerous factors,among which the operational characteristics of the building and the BEMS control parameters also play an essential role.This research develops a user-driven simulation tool where users can input the building parameters and BEMS controls to determine the effectiveness of their BEMS.The simulation tool gives the user the flexibility to understand the potential energy savings by employing specific BEMS control and help in making intelligent decisions.The simulation is developed using Visual Basic Application(VBA)in Microsoft Excel,based on discrete-event Monte Carlo Simulation(MCS).The simulation works by initially calculating the energy required for space cooling and heating based on current building parameters input by the user in the model.Further,during the second simulation,the user selects all the BEMS controls and improved building envelope to determine the energy required for space cooling and heating during that case.The model compares the energy consumption from the first simulation and the second simulation.Then the simulation model will provide the rating of the effectiveness of BEMS on a continuous scale of 1 to 5(1 being poor effectiveness and 5 being excellent effectiveness of BEMS).This work is intended to facilitate building owner/energy managers to analyze the building energy performance concerning the efficacy of their energy management system.
基金supported by“Key Technology Research on Operational Performance Improvement of the Green Building”(2020YFS0060)Key Project of Science and Technology Department of Sichuan Province+2 种基金supported by“Creative VR Teaching and Learning Research Based on‘PBL+’and Multidimensional Collaboration”(JG2021-721)“Reform in the Mode and Practice of Architecture Education with the Characteristics of Geology”(JG2021-672)Education Quality and Teaching Reform Project of Higher Education in Sichuan Province in 2021–2023.
文摘The construction of relevant standards for building carbon emission assessment in China has just started,and the quantitative analysis method and evaluation system are still imperfect,which hinders the development of low-carbon building design.Therefore,the use of intelligent energy management system is very necessary.The purpose of this paper is to explore the design optimization of low-carbon buildings based on intelligent energy management systems.Based on the proposed quantitative method of building carbon emission,this paper establishes the quota theoretical system of building carbon emission analysis,and develops the quota based carbon emission calculation software.Smart energy management system is a low-carbon energy-saving system based on the reference of large-scale building energy-saving system and combined with energy consumption.It provides a fast and effective calculation tool for the quantitative evaluation of carbon emission of construction projects,so as to realize the carbon emission control and optimization in the early stage of architectural design and construction.On this basis,the evaluation,analysis and calculation method of building structure based on carbon reduction target is proposed,combined with the carbon emission quota management standard proposed in this paper.Taking small high-rise residential buildings as an example,this paper compares and analyzes different building structural systems from the perspectives of structural performance,economy and carbon emission level.It provides a reference for the design and evaluation of low-carbon building structures.The smart energy management system collects user energy use parameters.It uses time period and time sequence to obtain a large amount of data for analysis and integration,which provides users with intuitive energy consumption data.Compared with the traditional architectural design method,the industrialized construction method can save 589.22 megajoules(MJ)per square meter.Based on 29270 megajoules(MJ)per ton of standard coal,the construction area of the case is about 8000 m2,and the energy saving of residential buildings is 161.04 tons of standard coal.This research is of great significance in reducing the carbon emission intensity of buildings.
基金supported by National Natural Science Foundation of China(U2268206,T2222015)Beijing Natural Science Foundation(4232031)+1 种基金Key Fields Project of DEGP(2021ZDZX1110)Shenzhen Science and Technology Program(CJGJZD20220517141801004).
文摘In view of class imbalance in data-driven modeling for Prognostics and Health Management(PHM),existing classification methods may fail in generating effective fault prediction models for the on-board high-speed train control equipment.A virtual sample generation solution based on Generative Adversarial Network(GAN)is proposed to overcome this shortcoming.Aiming at augmenting the sample classes with the imbalanced data problem,the GAN-based virtual sample generation strategy is embedded into the establishment of fault prediction models.Under the PHM framework of the on-board train control system,the virtual sample generation principle and the detailed procedures are presented.With the enhanced class-balancing mechanism and the designed sample augmentation logic,the PHM scheme of the on-board train control equipment has powerful data condition adaptability and can effectively predict the fault probability and life cycle status.Practical data from a specific type of on-board train control system is employed for the validation of the presented solution.The comparative results indicate that GAN-based sample augmentation is capable of achieving a desirable sample balancing level and enhancing the performance of correspondingly derived fault prediction models for the Condition-based Maintenance(CBM)operations.
文摘The Ghana Research Reactor-1 (GHARR-1) is a 34 kW low enriched uranium (LEU) Miniature Neutron Source Reactor (MNSR), tank-in-pool type and cooled by natural circulation under atmospheric pressure operating conditions. GHARR-1 is owned by Ghana Atomic Energy Commission (GAEC) and operated by National Nuclear Research Institute (NNRI), one of the institutes of GAEC. GHARR-1 is housed by Nuclear Reactors Research Centre (NRRC), one of the Centres of NNRI. Management/Administration, Radiation protection, Reactor operation and maintenance, Reactor utilization and Physical protection are the various systems/units that integrate to manage the activities of operation and utilization of GHARR-1 in addition to the quality assurance and quality control management system of the research reactor facility. The GHARR-1 which is currently in operation follows a robust maintenance culture adopted by the management system and this has made it possible to keep the reactor in operation with minimal interruption. The management system activities adopted at the Centre to ensure safety of the workers, public and the research reactor facility include authorization of the operation of the reactor for any experiments/modifications;providing material and financial resources for maintaining the research reactor facility;following standard procedures while carrying out Neutron Activation Analysis;participation in IAEA proficiency test;irradiation sites/positions characterization;following standard procedures while carrying out reactor operation and maintenance including reactor and pool water purification and other related activities;monitoring radiation levels in the controlled, supervised and uncontrolled areas of the research reactor facility as well as during reactor operation and maintenance;controlling the physical entry of the workers and public into the research reactor facility;and ensuring that the security structures provided to protect the reactor facility are functioning properly. The thorough knowledge on the functions of the various components that make up the electrical/electronic and control systems of the reactor has been observed to be important for continuous successful maintenance of the research reactor to keep the reactor in operation. This work provides some management system activities adopted to monitor the activities of the research reactor operation and utilization to guarantee safety of workers, public and the environment as well as to safeguard a continuous operation of the research reactor. These management system activities adopted among others, are in the form of Monitoring Forms provided for monitoring the activities of the research reactor operation and utilization in order to ensure standard procedures and specifications are followed and quality services are rendered to the public.
基金Hebei University Affiliated Hospital Youth Fund Scientific Research Project Project Number:2019Q017。
文摘Objective:To explore the role of specialized group management in the quality control of perioperative nursing.Methods:45 surgical nurses from our hospital were selected as the research subjects.Traditional operating room management was adopted from July 2019 to June 2020,and specialized group management was adopted from July 2020 to June 2021.The surgeon’s satisfaction,surgical nurses’core professional competence,and surgical patients’satisfaction were obtained through surveys and the results were analyzed.Results:Surgeon satisfaction before the implementation of specialized group management was significantly lower than after its implementation(P<0.05).Besides,surgical nurses’core professional competency scores before the implementation of specialized group management were significantly lower than after its implementation(P<0.05).Lastly,surgical patients’satisfaction before the implementation of specialized group management was significantly lower than after its implementation(P<0.05).Conclusion:Specialized group management helps to improve the quality of perioperative care and should be applied in clinical practice.
基金supported in part by the National Science Fund for Excellent Young Scholars of China(62222317)the National Science Foundation of China(62303492)+3 种基金the Major Science and Technology Projects in Hunan Province(2021GK1030)the Science and Technology Innovation Program of Hunan Province(2022WZ1001)the Key Research and Development Program of Hunan Province(2023GK2023)the Fundamental Research Funds for the Central Universities of Central South University(2024ZZTS0116)。
文摘This paper presents an asynchronous output-feed-back control strategy of semi-Markovian systems via sliding mode-based learning technique.Compared with most literature results that require exact prior knowledge of system state and mode information,an asynchronous output-feedback sliding sur-face is adopted in the case of incompletely available state and non-synchronization phenomenon.The holonomic dynamics of the sliding mode are characterized by a descriptor system in which the switching surface is regarded as the fast subsystem and the system dynamics are viewed as the slow subsystem.Based upon the co-occurrence of two subsystems,the sufficient stochastic admissibility criterion of the holonomic dynamics is derived by utilizing the characteristics of cumulative distribution functions.Furthermore,a recursive learning controller is formulated to guarantee the reachability of the sliding manifold and realize the chattering reduction of the asynchronous switching and sliding motion.Finally,the proposed theoretical method is substantia-ted through two numerical simulations with the practical contin-uous stirred tank reactor and F-404 aircraft engine model,respectively.
基金Supported by Hebei Provincial Natural Science Foundation of China(Grant Nos.E2020203174,E2020203078)S&T Program of Hebei Province of China(Grant No.226Z2202G)Science Research Project of Hebei Provincial Education Department of China(Grant No.ZD2022029).
文摘The all-wheel drive(AWD)hybrid system is a research focus on high-performance new energy vehicles that can meet the demands of dynamic performance and passing ability.Simultaneous optimization of the power and economy of hybrid vehicles becomes an issue.A unique multi-mode coupling(MMC)AWD hybrid system is presented to realize the distributed and centralized driving of the front and rear axles to achieve vectored distribution and full utilization of the system power between the axles of vehicles.Based on the parameters of the benchmarking model of a hybrid vehicle,the best model-predictive control-based energy management strategy is proposed.First,the drive system model was built after the analysis of the MMC-AWD’s drive modes.Next,three fundamental strategies were established to address power distribution adjustment and battery SOC maintenance when the SOC changed,which was followed by the design of a road driving force observer.Then,the energy consumption rate in the average time domain was processed before designing the minimum fuel consumption controller based on the equivalent fuel consumption coefficient.Finally,the advantage of the MMC-AWD was confirmed by comparison with the dynamic performance and economy of the BYD Song PLUS DMI-AWD.The findings indicate that,in comparison to the comparative hybrid system at road adhesion coefficients of 0.8 and 0.6,the MMC-AWD’s capacity to accelerate increases by 5.26%and 7.92%,respectively.When the road adhesion coefficient is 0.8,0.6,and 0.4,the maximum climbing ability increases by 14.22%,12.88%,and 4.55%,respectively.As a result,the dynamic performance is greatly enhanced,and the fuel savings rate per 100 km of mileage reaches 12.06%,which is also very economical.The proposed control strategies for the new hybrid AWD vehicle can optimize the power and economy simultaneously.
文摘Objective:To evaluate the application value of a refined quality control management model for a sterilization supply center.Methods:A retrospective analysis was conducted on the work situation of the sterilization supply center from January 2021 to January 2023.The work situation before January 31,2022,was classified as the control group;a routine quality control management model was implemented,and the work situation after January 31,2022,was classified as the observation group.The quality of medical device management and department satisfaction between the two groups were compared.Results:The timely recovery and supply rate,classification and cleaning pass rate,disinfection pass rate,packaging pass rate,sterilization pass rate,and department satisfaction score in the observation group were all higher than those of the control group(P<0.05).Conclusion:Implementing a refined quality control management model in the sterilization supply center can improve the quality management level of medical devices and department satisfaction and is worthy of promotion.
文摘The global diabetes surge poses a critical public health challenge,emphasizing the need for effective glycemic control.However,rapid correction of chronic hyperglycemia can unexpectedly trigger microvascular complications,necessitating a reevaluation of the speed and intensity of glycemic correction.Theories suggest swift blood sugar reductions may cause inflammation,oxidative stress,and neurovascular changes,resulting in complications.Healthcare providers should cautiously approach aggressive glycemic control,especially in long-standing,poorly controlled diabetes.Preventing and managing these complications requires a personalized,comprehensive approach with education,monitoring,and interdisciplinary care.Diabetes management must balance short and longterm goals,prioritizing overall well-being.This editorial underscores the need for a personalized,nuanced approach,focusing on equilibrium between glycemic control and avoiding overcorrection.
文摘Hospitals are crucial healthcare facilities where patients seek treatment,and effective budget management within hospitals significantly impacts their operational efficiency and financial performance.In the age of information technology and advanced healthcare solutions,the emergence of smart hospitals represents a new trend in the medical industry’s evolution.Leveraging modern information technology can enhance the development of hospital IT systems and drive budget management toward greater intelligence.This paper begins by analyzing the influence of smart hospitals on hospital budget control.It then examines the current state of budget management control within smart hospitals.Finally,it proposes several strategies for budget management control in smart hospitals,aiming to provide guidance for relevant stakeholders.
文摘The highway engineering process is complex,coupled with a relatively long construction period,hence requires increased coordination between participating units to prevent economic disputes and efficiency losses.The main body of the construction project needs to strengthen the management and control of funds.In this regard,this paper analyzes the importance of cost management in highway projects by clarifying and analyzing the current cost management status quo problems and causes.The highway engineering cost control strategy and implementation methods are summarized to provide references for improving the quality of highway engineering.
文摘Objective: To explore the effect of evidence-based quality control circle (QCC) in improving the implementation rate of airway management measures in adult critically ill patients. Methods: Based on the Joanna Briggs Institute (JBI) evidence-based health care model, the best evidence of airway management in adult critically ill patients was obtained and applied to the clinic. Results: The total implementation rate of airway management measures in adult critically ill patients increased from 23.62% before the implementation of quality control circle to 88.82%, and the pulmonary infection rate in critically ill patients decreased from 42.31% to 21.74%, with statistical significance between the two groups (P 0.05). Conclusion: Evidence-based quality control circle activities can standardize the practice standards of airway management in critically ill patients, reduce the occurrence of patients’ airway related complications, and improve clinical outcomes.
文摘With the gradual acceleration of the urbanization process,the construction industry has been developing rapidly.As the key link to ensure the quality and safety of the project,construction management and construction quality control are of great significance to enhance the competitiveness of construction enterprises and realize sustainable development.In this paper,the effective strategy of construction management and the effective strategy of construction quality control will be discussed in depth,aiming at providing useful management and quality control strategies for construction enterprises.
文摘With the deepening of the“Belt and Road”initiative,Chinese enterprises are facing unprecedented opportunities and challenges for international cooperation.This paper mainly analyzes the current situation,existing problems,and coping strategies of enterprise international cooperation management in the context of the“Belt and Road”.This article expounds on the importance of the“Belt and Road”initiative for international cooperation of enterprises and analyzes the key links of international cooperation management of enterprises from the aspects of internationalization strategy,cross-cultural management,risk prevention and control,and resource integration.Finally,combined with the case,this paper puts forward the management strategies and suggestions that enterprises should adopt in international cooperation,to provide a useful reference for Chinese enterprises in international cooperation in the construction of the“Belt and Road.”
文摘In modern enterprise management,strengthening the control and management of procurement processes can effectively reduce operational costs.However,with the continuous reform and improvement of China’s market economy system,competition among supply chain enterprises has intensified.The traditional procurement management model is no longer able to meet the needs of enterprise development in the current era.As a result,procurement management based on supply chain management has emerged,offering significant improvements in the scientific management of procurement processes.It has become an important means of promoting the long-term development of enterprises.This paper primarily analyzes and studies procurement cost control based on supply chain management,providing insights for reference.
文摘With the rapid development of the photovoltaic(PV)industry and policy support,photovoltaic engineering has attracted much attention as a clean energy project.However,the complexity and huge investment scale of photovoltaic projects make cost management and cost control the key to project success.The purpose of this paper is to discuss the cost management and cost control strategies of photovoltaic projects,analyze their importance and challenges in the process of project implementation,and discuss the common cost control methods and techniques in photovoltaic projects,to improve cost management and cost control in photovoltaic projects,and to provide a reference for the sustainable development of the industry.