By applying an existence theorem of maximal elements of set-valued mappings in FC-spaces proposed by the author, some new existence theorems of solutions for systems of generalized quasi-variational inclusion (disclu...By applying an existence theorem of maximal elements of set-valued mappings in FC-spaces proposed by the author, some new existence theorems of solutions for systems of generalized quasi-variational inclusion (disclusion) problems are proved in FC-spaces without convexity structures. These results improve and generalize some results in recent publications from closed convex subsets of topological vector spaces to FC-spaces under weaker conditions.展开更多
In this paper, we introduce some new systems of generalized vector quasi-variational inclusion problems and system of generalized vector ideal (resp., proper, Pareto, weak) quasi-optimization problems in locally FC-...In this paper, we introduce some new systems of generalized vector quasi-variational inclusion problems and system of generalized vector ideal (resp., proper, Pareto, weak) quasi-optimization problems in locally FC-uniform spaces without convexity structure. By using the KKM type theorem and Himmelberg type fixed point theorem proposed by the author, some new existence theorems of solutions for the systems of generalized vector quasi-variational inclusion problems are proved. As to its applications, we obtain some existence results of solutions for systems of generalized vector quasi-optimization problems.展开更多
In this article, we introduce a hybrid iterative scheme for finding a common element of the set of solutions for a generalized equilibrium problems, the set of common fixed point for a family of infinite k-strict pseu...In this article, we introduce a hybrid iterative scheme for finding a common element of the set of solutions for a generalized equilibrium problems, the set of common fixed point for a family of infinite k-strict pseudo-contractive mappings, and the set of solutions of the variational inclusion problem with multi-valued maximal monotone mappings and inverse-strongly monotone mappings in Hilbert space. Under suitable conditions, some strong convergence theorems are proved. Our results extends the recent results in G.L.Acedo and H.K.Xu [2], Zhang, Lee and Chan [8], Wakahashi and Toyoda [9], Takahashi and Takahashi [I0] and S. S. Chang, H. W. Joseph Lee and C. K. Chan [II], S.Takahashi and W.Takahashi [12]. Moreover, the method of proof adopted in this article is different from those of [4] and [12].展开更多
In this paper, we study some new systems of generalized quasi-variational inclusion problems in FC-spaces without convexity structure.By applying an existence theorem of maximal elements of set-valued mappings due to ...In this paper, we study some new systems of generalized quasi-variational inclusion problems in FC-spaces without convexity structure.By applying an existence theorem of maximal elements of set-valued mappings due to the author, some new existence theorems of solutions for the systems of generalized quasi-variational inclusion problems are proved in noncompact FC-spaces. As applications, some existence results of solutions for the system of quasi-optimization problems and mathematical programs with the systems of generalized quasi-variational inclusion constraints are obtained in FC-spaces.展开更多
The sensitivity analysis for a class of generalized set-valued quasi-variational inclusion problems is investigated in the setting of Banach spaces. By using the resolvent operator technique, without assuming the diff...The sensitivity analysis for a class of generalized set-valued quasi-variational inclusion problems is investigated in the setting of Banach spaces. By using the resolvent operator technique, without assuming the differentiability and monotonicity of the given data, equivalence of these problems to the class of generalized resolvent equations is established.展开更多
In this paper, we study a generalized quasi-variational inequality (GQVI for short) with twomultivalued operators and two bifunctions in a Banach space setting. A coupling of the Tychonov fixedpoint principle and the ...In this paper, we study a generalized quasi-variational inequality (GQVI for short) with twomultivalued operators and two bifunctions in a Banach space setting. A coupling of the Tychonov fixedpoint principle and the Katutani-Ky Fan theorem for multivalued maps is employed to prove a new existencetheorem for the GQVI. We also study a nonlinear optimal control problem driven by the GQVI and givesufficient conditions ensuring the existence of an optimal control. Finally, we illustrate the applicability of thetheoretical results in the study of a complicated Oseen problem for non-Newtonian fluids with a nonmonotone andmultivalued slip boundary condition (i.e., a generalized friction constitutive law), a generalized leak boundarycondition, a unilateral contact condition of Signorini’s type and an implicit obstacle effect, in which themultivalued slip boundary condition is described by the generalized Clarke subgradient, and the leak boundarycondition is formulated by the convex subdifferential operator for a convex superpotential.展开更多
The generalized Nash equilibrium problem (GNEP) is a generalization of the standard Nash equilibrium problem (NEP), in which both the utility function and the strategy space of each player depend on the strategies...The generalized Nash equilibrium problem (GNEP) is a generalization of the standard Nash equilibrium problem (NEP), in which both the utility function and the strategy space of each player depend on the strategies chosen by all other players. This problem has been used to model various problems in applications. However, the convergent solution algorithms are extremely scare in the literature. In this paper, we present an incremental penalty method for the GNEP, and show that a solution of the GNEP can be found by solving a sequence of smooth NEPs. We then apply the semismooth Newton method with Armijo line search to solve latter problems and provide some results of numerical experiments to illustrate the proposed approach.展开更多
In this article, we consider a differential inclusion of Kirchhoff type with a memory condition at the boundary. We prove the asymptotic behavior of the corresponding solutions. For a wider class of relaxation functio...In this article, we consider a differential inclusion of Kirchhoff type with a memory condition at the boundary. We prove the asymptotic behavior of the corresponding solutions. For a wider class of relaxation functions, we establish a more general decay result, from which the usual exponential and polynomial decay rates are only special cases.展开更多
A quasi-variational inequality is proved in paracompact setting which generalizes the results of Zhou Chen andAubin. As applications, two existence theorems on the solutions of optimization problems and social equilib...A quasi-variational inequality is proved in paracompact setting which generalizes the results of Zhou Chen andAubin. As applications, two existence theorems on the solutions of optimization problems and social equilibria ofmetagames are showed which improve and extend the recent results of Kaczynski-Zeidan and Aubin.展开更多
By the inductive relations,this paper first obtains some existence theorems of solutions for generalized quasi-variational relation problems,which are different from other papers.As applications,some existence theorem...By the inductive relations,this paper first obtains some existence theorems of solutions for generalized quasi-variational relation problems,which are different from other papers.As applications,some existence theorems of solutions for generalized quasi-equilibrium problems and NS-equilibria for noncooperative games under uncertainty are obtained.展开更多
In this paper, strong convergence of an iterative sequence is proved, which computes an approximate solution of the set of solutions of split variational inclusion problem, the set of fixed points of a nonexpansive ma...In this paper, strong convergence of an iterative sequence is proved, which computes an approximate solution of the set of solutions of split variational inclusion problem, the set of fixed points of a nonexpansive mapping and the set of common fixed points of a family of generalized asymptotically nonexpansive semigroup. Results obtained in this paper extend and unify the previously known results in the previous literatures.展开更多
基金Project supported by the Scientific Research Fund of Sichuan Normal University (No. 09ZDL04)the Sichuan Province Leading Academic Discipline Project (No. SZD0406)
文摘By applying an existence theorem of maximal elements of set-valued mappings in FC-spaces proposed by the author, some new existence theorems of solutions for systems of generalized quasi-variational inclusion (disclusion) problems are proved in FC-spaces without convexity structures. These results improve and generalize some results in recent publications from closed convex subsets of topological vector spaces to FC-spaces under weaker conditions.
基金supported by the Natural Science Foundation of Sichuan Education Department of China(No. 07ZA092)the Sichuan Province Leading Academic Discipline Project (No. SZD0406)
文摘In this paper, we introduce some new systems of generalized vector quasi-variational inclusion problems and system of generalized vector ideal (resp., proper, Pareto, weak) quasi-optimization problems in locally FC-uniform spaces without convexity structure. By using the KKM type theorem and Himmelberg type fixed point theorem proposed by the author, some new existence theorems of solutions for the systems of generalized vector quasi-variational inclusion problems are proved. As to its applications, we obtain some existence results of solutions for systems of generalized vector quasi-optimization problems.
基金supported by Scientific Research Fund of Sichuan Provincial Education Department (09ZB102)Scientific Research Fund of Science and Technology Deportment of Sichuan Provincial (2011JYZ011)
文摘In this article, we introduce a hybrid iterative scheme for finding a common element of the set of solutions for a generalized equilibrium problems, the set of common fixed point for a family of infinite k-strict pseudo-contractive mappings, and the set of solutions of the variational inclusion problem with multi-valued maximal monotone mappings and inverse-strongly monotone mappings in Hilbert space. Under suitable conditions, some strong convergence theorems are proved. Our results extends the recent results in G.L.Acedo and H.K.Xu [2], Zhang, Lee and Chan [8], Wakahashi and Toyoda [9], Takahashi and Takahashi [I0] and S. S. Chang, H. W. Joseph Lee and C. K. Chan [II], S.Takahashi and W.Takahashi [12]. Moreover, the method of proof adopted in this article is different from those of [4] and [12].
基金supported by the Scientific Research Fun of Sichuan Normal University(09ZDL04)the Sichuan Province Leading Academic Discipline Project(SZD0406)
文摘In this paper, we study some new systems of generalized quasi-variational inclusion problems in FC-spaces without convexity structure.By applying an existence theorem of maximal elements of set-valued mappings due to the author, some new existence theorems of solutions for the systems of generalized quasi-variational inclusion problems are proved in noncompact FC-spaces. As applications, some existence results of solutions for the system of quasi-optimization problems and mathematical programs with the systems of generalized quasi-variational inclusion constraints are obtained in FC-spaces.
基金Project supported by the Teaching and Research Award Fund for Outstanding Young Teachers in Higher Education Institutions of Ministry of Education, China (No.0705)the Dawn Program Fund of Shanghai of China (No.BL200404)Shanghai Leading Academic Discipline Project (No.T0401)
文摘The sensitivity analysis for a class of generalized set-valued quasi-variational inclusion problems is investigated in the setting of Banach spaces. By using the resolvent operator technique, without assuming the differentiability and monotonicity of the given data, equivalence of these problems to the class of generalized resolvent equations is established.
基金The first author was supported by the Guangxi Natural Science Foundation of China(Grant No.2021GXNSFFA196004)National Natural Science Foundation of China(Grant No.12001478)+4 种基金Horizon 2020 of the European Union(Grant No.823731 CONMECH)National Science Center of Poland(Grant No.2017/25/N/ST1/00611)The second author was supported by National Science Foundation of USA(Grant No.DMS 1720067)The third author was supported by the National Science Center of Poland(Grant No.2021/41/B/ST1/01636)the Ministry of Science and Higher Education of Poland(Grant Nos.4004/GGPJII/H2020/2018/0 and 440328/PnH2/2019)。
文摘In this paper, we study a generalized quasi-variational inequality (GQVI for short) with twomultivalued operators and two bifunctions in a Banach space setting. A coupling of the Tychonov fixedpoint principle and the Katutani-Ky Fan theorem for multivalued maps is employed to prove a new existencetheorem for the GQVI. We also study a nonlinear optimal control problem driven by the GQVI and givesufficient conditions ensuring the existence of an optimal control. Finally, we illustrate the applicability of thetheoretical results in the study of a complicated Oseen problem for non-Newtonian fluids with a nonmonotone andmultivalued slip boundary condition (i.e., a generalized friction constitutive law), a generalized leak boundarycondition, a unilateral contact condition of Signorini’s type and an implicit obstacle effect, in which themultivalued slip boundary condition is described by the generalized Clarke subgradient, and the leak boundarycondition is formulated by the convex subdifferential operator for a convex superpotential.
文摘The generalized Nash equilibrium problem (GNEP) is a generalization of the standard Nash equilibrium problem (NEP), in which both the utility function and the strategy space of each player depend on the strategies chosen by all other players. This problem has been used to model various problems in applications. However, the convergent solution algorithms are extremely scare in the literature. In this paper, we present an incremental penalty method for the GNEP, and show that a solution of the GNEP can be found by solving a sequence of smooth NEPs. We then apply the semismooth Newton method with Armijo line search to solve latter problems and provide some results of numerical experiments to illustrate the proposed approach.
基金supported by the Dong-A University research fund
文摘In this article, we consider a differential inclusion of Kirchhoff type with a memory condition at the boundary. We prove the asymptotic behavior of the corresponding solutions. For a wider class of relaxation functions, we establish a more general decay result, from which the usual exponential and polynomial decay rates are only special cases.
文摘A quasi-variational inequality is proved in paracompact setting which generalizes the results of Zhou Chen andAubin. As applications, two existence theorems on the solutions of optimization problems and social equilibria ofmetagames are showed which improve and extend the recent results of Kaczynski-Zeidan and Aubin.
基金supported the Chen Guang Project Sponsored by the Shanghai Municipal Education Commission and Shanghai Education Development Foundation under Grant No.13CG35Open Project of Key Laboratory of Mathematical Economics(SUFE),Ministry of Education under Grant No.201309KF02
文摘By the inductive relations,this paper first obtains some existence theorems of solutions for generalized quasi-variational relation problems,which are different from other papers.As applications,some existence theorems of solutions for generalized quasi-equilibrium problems and NS-equilibria for noncooperative games under uncertainty are obtained.
基金supported by the Science and Technology Project of Education Department of Fujian Province under Grant No.JA14365Fujian Nature Science Foundation under Grant No.2014J01008
文摘In this paper, strong convergence of an iterative sequence is proved, which computes an approximate solution of the set of solutions of split variational inclusion problem, the set of fixed points of a nonexpansive mapping and the set of common fixed points of a family of generalized asymptotically nonexpansive semigroup. Results obtained in this paper extend and unify the previously known results in the previous literatures.