The inverse problem for a class of nonlinear evolution equations of dispersive type type was reduced to Cauchy problem of nonlinear evolution equation in an abstract space. By means of the semigroup method and equippi...The inverse problem for a class of nonlinear evolution equations of dispersive type type was reduced to Cauchy problem of nonlinear evolution equation in an abstract space. By means of the semigroup method and equipping equivalent norm technique, the existence and uniqueness theorem of global solution was obtained for this class of abstract evolution equations, and was applied to the inverse problem discussed here. The existence and uniqueness theorem of global solution it,as given for this class of nonlinear evolution equations of dispersive type. The results extend and generalize essentially the related results of the existence and uniqueness of local solution presented by YUAN Zhong-xin.展开更多
In this paper,weak optimal inverse problems of interval linear programming(IvLP)are studied based on KKT conditions.Firstly,the problem is precisely defined.Specifically,by adjusting the minimum change of the current ...In this paper,weak optimal inverse problems of interval linear programming(IvLP)are studied based on KKT conditions.Firstly,the problem is precisely defined.Specifically,by adjusting the minimum change of the current cost coefficient,a given weak solution can become optimal.Then,an equivalent characterization of weak optimal inverse IvLP problems is obtained.Finally,the problem is simplified without adjusting the cost coefficient of null variable.展开更多
We introduce a multi-cost-functional method for solving inverse problems of wave equations. This method has its simplicity, efficiency and good physical interpretation. It has the advantage of being programmed for two...We introduce a multi-cost-functional method for solving inverse problems of wave equations. This method has its simplicity, efficiency and good physical interpretation. It has the advantage of being programmed for two- or three- (space) dimensional problems as well as for one-dimensional problems.展开更多
A new widly convergent method for solving the problem of operator identification is illustrated. Numerical simulations are carried out to test the feasibility and to study the general characteristics of the technique ...A new widly convergent method for solving the problem of operator identification is illustrated. Numerical simulations are carried out to test the feasibility and to study the general characteristics of the technique without the real measurement data. This technique is a direct application of the continuation homo-topy method for solving nonlinear systems of equations. It is found that this method does give excellent results in solving the inverse problem of the elliptic differential equations.展开更多
In this paper,we propose a numerical method to estimate the unknown order of a Riemann-Liouville fractional derivative for a fractional Stokes' first problem for a heated generalized second grade fluid.The implicit n...In this paper,we propose a numerical method to estimate the unknown order of a Riemann-Liouville fractional derivative for a fractional Stokes' first problem for a heated generalized second grade fluid.The implicit numerical method is employed to solve the direct problem.For the inverse problem,we first obtain the fractional sensitivity equation by means of the digamma function,and then we propose an efficient numerical method,that is,the Levenberg-Marquardt algorithm based on a fractional derivative,to estimate the unknown order of a Riemann-Liouville fractional derivative.In order to demonstrate the effectiveness of the proposed numerical method,two cases in which the measurement values contain random measurement error or not are considered.The computational results demonstrate that the proposed numerical method could efficiently obtain the optimal estimation of the unknown order of a RiemannLiouville fractional derivative for a fractional Stokes' first problem for a heated generalized second grade fluid.展开更多
The following inverse problem is solved—given the eigenvalues and the potential b(n) for a difference boundary value problem with quadratic dependence on the eigenparameter, λ, the weights c(n) can be uniquely ...The following inverse problem is solved—given the eigenvalues and the potential b(n) for a difference boundary value problem with quadratic dependence on the eigenparameter, λ, the weights c(n) can be uniquely reconstructed. The investi-gation is inductive on m where represents the number of unit intervals and the results obtained depend on the specific form of the given boundary conditions. This paper is a sequel to [1] which provided an algorithm for the solution of an analogous inverse problem, where the eigenvalues and weights were given and the potential was uniquely reconstructed. Since the inverse problem considered in this paper contains more unknowns than the inverse problem considered in [1], an additional spectrum is required more often than was the case in [1].展开更多
With the increasingly widespread application of linear algebra theory, and in its opposite direction is not enough emphasis, linear algebra, several important points: matrix, determinant, linear equations, linear tra...With the increasingly widespread application of linear algebra theory, and in its opposite direction is not enough emphasis, linear algebra, several important points: matrix, determinant, linear equations, linear transformations, matrix keratosis and other anti-deepening understanding of the basics and improve the comprehensive ability to solve problems.展开更多
A local meshless method is applied to find the numerical solutions of two classes of inverse problems in parabolic equations. The problem is reconstructing the source term using a solution specified at some internal p...A local meshless method is applied to find the numerical solutions of two classes of inverse problems in parabolic equations. The problem is reconstructing the source term using a solution specified at some internal points;one class is that the source term is time dependent, and the other class is that the source term is time and space dependent. Some numerical experiments are presented and discussed.展开更多
The spectral distribution exp( ), where {} are the eigenvalues of the negative Laplacian -△=- in the (x^1,x^2)-plane, is studied for a variety of domains, where -∞< t <∞ and i=(1/2)(-1) . The dependence of (...The spectral distribution exp( ), where {} are the eigenvalues of the negative Laplacian -△=- in the (x^1,x^2)-plane, is studied for a variety of domains, where -∞< t <∞ and i=(1/2)(-1) . The dependence of (t)on the connectivity of a domain and the boundary conditions are analyzed. Particular attention is given to a general bounded domain Ω in R^2 with a smooth boundary Ω, where a finite number of piecewise smooth Dirichlet, Neumann and Robin boundary conditions on the piecewise smooth parts Γj(j = 1,……,n) of Ω are considered such that Some geometrical properties of Ω(e.g., the area of Ω, the total lengths of the boundary, the curvature of its boundary, etc.) are determined, from the asymptotic expansions of (t) for |t| → 0.展开更多
An inverse problem for identification of the coefficient in heat-conduction equation is considered. After reducing the problem to a nonlinear ill-posed operator equation, Newton type iterative methods are considered. ...An inverse problem for identification of the coefficient in heat-conduction equation is considered. After reducing the problem to a nonlinear ill-posed operator equation, Newton type iterative methods are considered. The implicit iterative method is applied to the linearized Newton equation, and the key step in the process is that a new reasonable a posteriori stopping rule for the inner iteration is presented. Numerical experiments for the new method as well as for Tikhonov method and Bakushikskii method are given, and these results show the obvious advantages of the new method over the other ones.展开更多
An inverse problem of determining the source term of the non-stationary transport equation was considered.The extra lateral boundary condition was chosen as the observation data.Based on a Carleman estimate on the non...An inverse problem of determining the source term of the non-stationary transport equation was considered.The extra lateral boundary condition was chosen as the observation data.Based on a Carleman estimate on the non-stationary transport equation,a global Lipschitz stability for the inverse problem was proved.展开更多
We present iterative numerical methods for solving the inverse problem of recovering the nonnegative Robin coefficient from partial boundary measurement of the solution to the Laplace equation. Based on the boundary i...We present iterative numerical methods for solving the inverse problem of recovering the nonnegative Robin coefficient from partial boundary measurement of the solution to the Laplace equation. Based on the boundary integral equation formulation of the problem, nonnegativity constraints in the form of a penalty term are incorporated conveniently into least-squares iteration schemes for solving the inverse problem. Numerical implementation and examples are presented to illustrate the effectiveness of this strategy in improving recovery results.展开更多
A fractal approximation algorithm is developed to obtain approximate solutions to an inverse initial-value problem IVP(inverse IVP) for the differential equation. Numerical computational results are presented to demon...A fractal approximation algorithm is developed to obtain approximate solutions to an inverse initial-value problem IVP(inverse IVP) for the differential equation. Numerical computational results are presented to demonstrate the effectiveness of this algorithm for solving inverse IVP for a class of specific differential equations.展开更多
We consider linear partial differential equations of first order on a region . We will see that we can write the equation in partial derivatives as an Fredholm integral equation of the first kind and will solve this l...We consider linear partial differential equations of first order on a region . We will see that we can write the equation in partial derivatives as an Fredholm integral equation of the first kind and will solve this latter with the techniques of inverse problem moments. We will find an approximated solution and bounds for the error of the estimated solution using the techniques on problem of moments.展开更多
In this paper, the authors consider inverse problems of determining a coemcient or a source term in an ultrahyperbolic equation by some lateral boundary data. The authors prove HSlder estimates which are global and lo...In this paper, the authors consider inverse problems of determining a coemcient or a source term in an ultrahyperbolic equation by some lateral boundary data. The authors prove HSlder estimates which are global and local and the key tool is Carleman estimate.展开更多
In this article,we consider the diffusion equation with multi-term time-fractional derivatives.We first derive,by a subordination principle for the solution,that the solution is positive when the initial value is non-...In this article,we consider the diffusion equation with multi-term time-fractional derivatives.We first derive,by a subordination principle for the solution,that the solution is positive when the initial value is non-negative.As an application,we prove the uniqueness of solution to an inverse problem of determination of the temporally varying source term by integral type information in a subdomain.Finally,several numerical experiments are presented to show the accuracy and efficiency of the algorithm.展开更多
The results of studies by solving the inverse thermal conductivity problem of the heat capacity of evaporator of the short linear heat pipes (HP’s) with a Laval nozzle-liked vapour channel and intended for cooling sp...The results of studies by solving the inverse thermal conductivity problem of the heat capacity of evaporator of the short linear heat pipes (HP’s) with a Laval nozzle-liked vapour channel and intended for cooling spacecraft and satellites with strict take-off mass regulation are presented. Mathematical formulation of the inverse problem for the HP’s thermal conductivity in one-dimensional coordinate system is accompanied by the measurement results using the monotonic heating method in a vacuum adiabatic calorimeter the HP’s surface temperatures along the longitudinal axis over the entire temperature load range, thermal resistance, and arrays of thermal power data on the evaporator Q<sub>ev</sub> and vortex flow calorimeter Q<sub>cond</sub> for the condensation surface allow us to estimate the average value of the evaporator heat capacity C<sub>ev</sub> by solving the inverse thermal conductivity problem in the HP’s evaporator region. Since at the beginning of working fluid boiling for a certain time interval, the temperature of the capillary-porous evaporator remains close to constant, and with the continuation of heating and by solving the inverse thermal conductivity problem, it becomes possible to calculate the heat capacity of the working evaporator and the evaporation specific heat of the boiling working fluid and compare it with the table values.展开更多
This paper is concerned with the inverse scattering problems for Schrdinger equations with compactly supported potentials.For purpose of reconstructing the support of the potential,we derive a factorization of the sca...This paper is concerned with the inverse scattering problems for Schrdinger equations with compactly supported potentials.For purpose of reconstructing the support of the potential,we derive a factorization of the scattering amplitude operator A and prove that the ranges of (A* A) ^1/4 and G which maps more general incident fields than plane waves into the scattering amplitude coincide.As an application we characterize the support of the potential using only the spectral data of the operator A.展开更多
This paper deals with an inverse problem for the unknown source term in a nonlinear evolution equation. Firstly, the authors change the initial boundary value problem (IBVP) for the equation into a Cauchy problem for ...This paper deals with an inverse problem for the unknown source term in a nonlinear evolution equation. Firstly, the authors change the initial boundary value problem (IBVP) for the equation into a Cauchy problem for a certain nonlinear evolution equation. Secondly, using the semigroup theory, the authors establish the existence and uniqueness of the solution for the inverse problem. Finally, they take advantage of the fixed point method for some contraction mapping and get the solvability of the inverse problem for the evolution equation.展开更多
Based on the embedding thought, a method of wide convergence region for solving the coefficient inverse problem of wave equations in the space-time variable domain is presented. The numerical simulation shows that the...Based on the embedding thought, a method of wide convergence region for solving the coefficient inverse problem of wave equations in the space-time variable domain is presented. The numerical simulation shows that the method is feasible and effective.展开更多
文摘The inverse problem for a class of nonlinear evolution equations of dispersive type type was reduced to Cauchy problem of nonlinear evolution equation in an abstract space. By means of the semigroup method and equipping equivalent norm technique, the existence and uniqueness theorem of global solution was obtained for this class of abstract evolution equations, and was applied to the inverse problem discussed here. The existence and uniqueness theorem of global solution it,as given for this class of nonlinear evolution equations of dispersive type. The results extend and generalize essentially the related results of the existence and uniqueness of local solution presented by YUAN Zhong-xin.
基金Supported by the National Natural Science Foundation of China(11971433)First Class Discipline of Zhe-jiang-A(Zhejiang Gongshang University-Statistics,1020JYN4120004G-091),Graduate Scientic Research and Innovation Foundation of Zhejiang Gongshang University.
文摘In this paper,weak optimal inverse problems of interval linear programming(IvLP)are studied based on KKT conditions.Firstly,the problem is precisely defined.Specifically,by adjusting the minimum change of the current cost coefficient,a given weak solution can become optimal.Then,an equivalent characterization of weak optimal inverse IvLP problems is obtained.Finally,the problem is simplified without adjusting the cost coefficient of null variable.
文摘We introduce a multi-cost-functional method for solving inverse problems of wave equations. This method has its simplicity, efficiency and good physical interpretation. It has the advantage of being programmed for two- or three- (space) dimensional problems as well as for one-dimensional problems.
文摘A new widly convergent method for solving the problem of operator identification is illustrated. Numerical simulations are carried out to test the feasibility and to study the general characteristics of the technique without the real measurement data. This technique is a direct application of the continuation homo-topy method for solving nonlinear systems of equations. It is found that this method does give excellent results in solving the inverse problem of the elliptic differential equations.
基金supported by the National Natural Science Foundation of China(Grants 11472161,11102102,and 91130017)the Independent Innovation Foundation of Shandong University(Grant 2013ZRYQ002)the Natural Science Foundation of Shandong Province(Grant ZR2014AQ015)
文摘In this paper,we propose a numerical method to estimate the unknown order of a Riemann-Liouville fractional derivative for a fractional Stokes' first problem for a heated generalized second grade fluid.The implicit numerical method is employed to solve the direct problem.For the inverse problem,we first obtain the fractional sensitivity equation by means of the digamma function,and then we propose an efficient numerical method,that is,the Levenberg-Marquardt algorithm based on a fractional derivative,to estimate the unknown order of a Riemann-Liouville fractional derivative.In order to demonstrate the effectiveness of the proposed numerical method,two cases in which the measurement values contain random measurement error or not are considered.The computational results demonstrate that the proposed numerical method could efficiently obtain the optimal estimation of the unknown order of a RiemannLiouville fractional derivative for a fractional Stokes' first problem for a heated generalized second grade fluid.
文摘The following inverse problem is solved—given the eigenvalues and the potential b(n) for a difference boundary value problem with quadratic dependence on the eigenparameter, λ, the weights c(n) can be uniquely reconstructed. The investi-gation is inductive on m where represents the number of unit intervals and the results obtained depend on the specific form of the given boundary conditions. This paper is a sequel to [1] which provided an algorithm for the solution of an analogous inverse problem, where the eigenvalues and weights were given and the potential was uniquely reconstructed. Since the inverse problem considered in this paper contains more unknowns than the inverse problem considered in [1], an additional spectrum is required more often than was the case in [1].
文摘With the increasingly widespread application of linear algebra theory, and in its opposite direction is not enough emphasis, linear algebra, several important points: matrix, determinant, linear equations, linear transformations, matrix keratosis and other anti-deepening understanding of the basics and improve the comprehensive ability to solve problems.
文摘A local meshless method is applied to find the numerical solutions of two classes of inverse problems in parabolic equations. The problem is reconstructing the source term using a solution specified at some internal points;one class is that the source term is time dependent, and the other class is that the source term is time and space dependent. Some numerical experiments are presented and discussed.
文摘The spectral distribution exp( ), where {} are the eigenvalues of the negative Laplacian -△=- in the (x^1,x^2)-plane, is studied for a variety of domains, where -∞< t <∞ and i=(1/2)(-1) . The dependence of (t)on the connectivity of a domain and the boundary conditions are analyzed. Particular attention is given to a general bounded domain Ω in R^2 with a smooth boundary Ω, where a finite number of piecewise smooth Dirichlet, Neumann and Robin boundary conditions on the piecewise smooth parts Γj(j = 1,……,n) of Ω are considered such that Some geometrical properties of Ω(e.g., the area of Ω, the total lengths of the boundary, the curvature of its boundary, etc.) are determined, from the asymptotic expansions of (t) for |t| → 0.
文摘An inverse problem for identification of the coefficient in heat-conduction equation is considered. After reducing the problem to a nonlinear ill-posed operator equation, Newton type iterative methods are considered. The implicit iterative method is applied to the linearized Newton equation, and the key step in the process is that a new reasonable a posteriori stopping rule for the inner iteration is presented. Numerical experiments for the new method as well as for Tikhonov method and Bakushikskii method are given, and these results show the obvious advantages of the new method over the other ones.
文摘An inverse problem of determining the source term of the non-stationary transport equation was considered.The extra lateral boundary condition was chosen as the observation data.Based on a Carleman estimate on the non-stationary transport equation,a global Lipschitz stability for the inverse problem was proved.
文摘We present iterative numerical methods for solving the inverse problem of recovering the nonnegative Robin coefficient from partial boundary measurement of the solution to the Laplace equation. Based on the boundary integral equation formulation of the problem, nonnegativity constraints in the form of a penalty term are incorporated conveniently into least-squares iteration schemes for solving the inverse problem. Numerical implementation and examples are presented to illustrate the effectiveness of this strategy in improving recovery results.
文摘A fractal approximation algorithm is developed to obtain approximate solutions to an inverse initial-value problem IVP(inverse IVP) for the differential equation. Numerical computational results are presented to demonstrate the effectiveness of this algorithm for solving inverse IVP for a class of specific differential equations.
文摘We consider linear partial differential equations of first order on a region . We will see that we can write the equation in partial derivatives as an Fredholm integral equation of the first kind and will solve this latter with the techniques of inverse problem moments. We will find an approximated solution and bounds for the error of the estimated solution using the techniques on problem of moments.
基金supported by the Council of Higher Education of Turkey(No.16.01.2012:558–2233)
文摘In this paper, the authors consider inverse problems of determining a coemcient or a source term in an ultrahyperbolic equation by some lateral boundary data. The authors prove HSlder estimates which are global and local and the key tool is Carleman estimate.
基金supported by National Natural Science Foundation of China(12271277)the Open Research Fund of Key Laboratory of Nonlinear Analysis&Applications(Central China Normal University),Ministry of Education,China.
文摘In this article,we consider the diffusion equation with multi-term time-fractional derivatives.We first derive,by a subordination principle for the solution,that the solution is positive when the initial value is non-negative.As an application,we prove the uniqueness of solution to an inverse problem of determination of the temporally varying source term by integral type information in a subdomain.Finally,several numerical experiments are presented to show the accuracy and efficiency of the algorithm.
文摘The results of studies by solving the inverse thermal conductivity problem of the heat capacity of evaporator of the short linear heat pipes (HP’s) with a Laval nozzle-liked vapour channel and intended for cooling spacecraft and satellites with strict take-off mass regulation are presented. Mathematical formulation of the inverse problem for the HP’s thermal conductivity in one-dimensional coordinate system is accompanied by the measurement results using the monotonic heating method in a vacuum adiabatic calorimeter the HP’s surface temperatures along the longitudinal axis over the entire temperature load range, thermal resistance, and arrays of thermal power data on the evaporator Q<sub>ev</sub> and vortex flow calorimeter Q<sub>cond</sub> for the condensation surface allow us to estimate the average value of the evaporator heat capacity C<sub>ev</sub> by solving the inverse thermal conductivity problem in the HP’s evaporator region. Since at the beginning of working fluid boiling for a certain time interval, the temperature of the capillary-porous evaporator remains close to constant, and with the continuation of heating and by solving the inverse thermal conductivity problem, it becomes possible to calculate the heat capacity of the working evaporator and the evaporation specific heat of the boiling working fluid and compare it with the table values.
基金The Major State Basic Research Development Program Grant (2005CB321701)the Heilongjiang Education Committee Grant (11551364) of China
文摘This paper is concerned with the inverse scattering problems for Schrdinger equations with compactly supported potentials.For purpose of reconstructing the support of the potential,we derive a factorization of the scattering amplitude operator A and prove that the ranges of (A* A) ^1/4 and G which maps more general incident fields than plane waves into the scattering amplitude coincide.As an application we characterize the support of the potential using only the spectral data of the operator A.
基金Supported by tile Post-doctorate Science Foundation and tile National NSF ofChina.
文摘This paper deals with an inverse problem for the unknown source term in a nonlinear evolution equation. Firstly, the authors change the initial boundary value problem (IBVP) for the equation into a Cauchy problem for a certain nonlinear evolution equation. Secondly, using the semigroup theory, the authors establish the existence and uniqueness of the solution for the inverse problem. Finally, they take advantage of the fixed point method for some contraction mapping and get the solvability of the inverse problem for the evolution equation.
文摘Based on the embedding thought, a method of wide convergence region for solving the coefficient inverse problem of wave equations in the space-time variable domain is presented. The numerical simulation shows that the method is feasible and effective.