In this paper, some sufficient conditions are obtained for the oscillation for solutions of systems of high order partial differential equations of neutral type.
In this paper we study the forced oscillations of boundary value problems of a class of higher order functional partial differential equations.The principal tool is an everaging techniqe which enables one to establish...In this paper we study the forced oscillations of boundary value problems of a class of higher order functional partial differential equations.The principal tool is an everaging techniqe which enables one to establish oscillation in terms of related functional differential inequallities.展开更多
In this paper, sane sufficient conditions are obtained for the oscillation for solutions of systems of high order partial differential equations of neutral type.
In this paper,by making use of the calculous technique and some results of the impulsive differential inequality,oscillatory properties of the solutions of certain nonlinear impulsive delay hyperbolic partial differen...In this paper,by making use of the calculous technique and some results of the impulsive differential inequality,oscillatory properties of the solutions of certain nonlinear impulsive delay hyperbolic partial differential equations with nonlinear diffusion coefficient are investigated.Sufficient conditions for oscillations of such equations are obtained.展开更多
This paper is concerned with the oscillations of neutral hyperbolic partial differential equations with delays. Necessary and sufficient, conditions are obtained for the oscillations of all solutions of the equations,...This paper is concerned with the oscillations of neutral hyperbolic partial differential equations with delays. Necessary and sufficient, conditions are obtained for the oscillations of all solutions of the equations, and these results are illustrated by some examples.展开更多
In this paper, some sufficient conditions are obtained for the oscillation of solutions for a class of second order nonlinear neutral partial differential equations with continuous distribution delay under Robin and D...In this paper, some sufficient conditions are obtained for the oscillation of solutions for a class of second order nonlinear neutral partial differential equations with continuous distribution delay under Robin and Dirichlet's boundary value conditions.展开更多
The oscillation theory of functional differential equations (FDEs) is surveyed including (ⅰ) formulation of oscillation problems; (ⅱ) a brief history of the oscillation theory of FDEs; (ⅲ) main topics in the oscill...The oscillation theory of functional differential equations (FDEs) is surveyed including (ⅰ) formulation of oscillation problems; (ⅱ) a brief history of the oscillation theory of FDEs; (ⅲ) main topics in the oscillation theory of FDEs; (ⅳ) open problems in the oscillation theory of FDEs.展开更多
In this paper we study the oscillations for a class of functional differential inequalities. By using these properties some forced oscillations to the boundary value problems of functional partial differential equatio...In this paper we study the oscillations for a class of functional differential inequalities. By using these properties some forced oscillations to the boundary value problems of functional partial differential equations are established.展开更多
In this work,stability with respect to part of the variables of nonlinear impulsive Caputo fractional differential equations is investigated.Some effective sufficient conditions of stability,uniform stability,asymptot...In this work,stability with respect to part of the variables of nonlinear impulsive Caputo fractional differential equations is investigated.Some effective sufficient conditions of stability,uniform stability,asymptotic uniform stability and Mittag Leffler stability.The approach presented is based on the specially introduced piecewise continuous Lyapunov functions.Furthermore,some numerical examples are given to show the effectiveness of our obtained theoretical results.展开更多
The aim of this work is to study the existence of a periodic solution for some neutral partial functional differential equations. Our approach is based on the R-boundedness of linear operators Lp-multipliers and UMD-s...The aim of this work is to study the existence of a periodic solution for some neutral partial functional differential equations. Our approach is based on the R-boundedness of linear operators Lp-multipliers and UMD-spaces.展开更多
We establish new Kamenev-type oscillation criteria for the half-linear partial differential equation with damping div(A(x)|| u||^p-2 u)+〈b(x),|| u||^p-2 u〉+c(x)|u|^p-2u=0(E)under quite general ...We establish new Kamenev-type oscillation criteria for the half-linear partial differential equation with damping div(A(x)|| u||^p-2 u)+〈b(x),|| u||^p-2 u〉+c(x)|u|^p-2u=0(E)under quite general conditions. These results are extensions of the recent results developed by Sun [Y.C. Sun, New Kamenev-type oscillation criteria of second order nonlinear differential equations with damping, J. Math. Anal. Appl. 291 (2004) 341-351] for second order ordinary differential equations in a natural way, and improve some existing results in the literature. As applications, we illustrate our main results using two different types of half-linear partial differential equations.展开更多
Under a combined dominant condition, an open problem of complex oscillation for the equation \%w (k) +Aw=0\% is set, where \%k≥3, a(z)\% is a transcendental entire function.
We consider the oscillation of a class fractional differential equation with Robin and Dirichlet boundary conditions. By generalized Riccati transformation technique and the differential inequality method, oscillation...We consider the oscillation of a class fractional differential equation with Robin and Dirichlet boundary conditions. By generalized Riccati transformation technique and the differential inequality method, oscillation criteria for a class of nonlinear fractional differential equation are obtained.展开更多
In this paper, some sufficient conditions for the oscillation for solutions to systems of n-th order partial functional differential equations are obtained.
In this paper, the oscillatory behavior for high order nonlinear functional differential equations are studied by means of the Lebesgue measure. It is found that the nonoscillatory solutions only have two kinds on som...In this paper, the oscillatory behavior for high order nonlinear functional differential equations are studied by means of the Lebesgue measure. It is found that the nonoscillatory solutions only have two kinds on some conditions. And necessary conditions for the existence of each kind of nonoscillatory solutions are presented as well. At the same ime, some sufficient conditions for oscillatory solutions are also established.展开更多
This article studies the development of two numerical techniques for solving convection-diffusion type partial integro-differential equation(PIDE)with a weakly singular kernel.Cubic trigonometric B-spline(CTBS)functio...This article studies the development of two numerical techniques for solving convection-diffusion type partial integro-differential equation(PIDE)with a weakly singular kernel.Cubic trigonometric B-spline(CTBS)functions are used for interpolation in both methods.The first method is CTBS based collocation method which reduces the PIDE to an algebraic tridiagonal system of linear equations.The other method is CTBS based differential quadrature method which converts the PIDE to a system of ODEs by computing spatial derivatives as weighted sum of function values.An efficient tridiagonal solver is used for the solution of the linear system obtained in the first method as well as for determination of weighting coefficients in the second method.An explicit scheme is employed as time integrator to solve the system of ODEs obtained in the second method.The methods are tested with three nonhomogeneous problems for their validation.Stability,computational efficiency and numerical convergence of the methods are analyzed.Comparison of errors in approximations produced by the present methods versus different values of discretization parameters and convection-diffusion coefficients are made.Convection and diffusion dominant cases are discussed in terms of Peclet number.The results are also compared with cubic B-spline collocation method.展开更多
In this paper, by applying the Jacobi elliptic function expansion method, the periodic solutions for two coupled nonlinear partial differential equations are obtained.
Hessian matrices are square matrices consisting of all possible combinations of second partial derivatives of a scalar-valued initial function. As such, Hessian matrices may be treated as elementary matrix systems of ...Hessian matrices are square matrices consisting of all possible combinations of second partial derivatives of a scalar-valued initial function. As such, Hessian matrices may be treated as elementary matrix systems of linear second-order partial differential equations. This paper discusses the Hessian and its applications in optimization, and then proceeds to introduce and derive the notion of the Jaffa Transform, a new linear operator that directly maps a Hessian square matrix space to the initial corresponding scalar field in nth dimensional Euclidean space. The Jaffa Transform is examined, including the properties of the operator, the transform of notable matrices, and the existence of an inverse Jaffa Transform, which is, by definition, the Hessian matrix operator. The Laplace equation is then noted and investigated, particularly, the relation of the Laplace equation to Poisson’s equation, and the theoretical applications and correlations of harmonic functions to Hessian matrices. The paper concludes by introducing and explicating the Jaffa Theorem, a principle that declares the existence of harmonic Jaffa Transforms, which are, essentially, Jaffa Transform solutions to the Laplace partial differential equation.展开更多
In this article, we study the impacts of nonlinearity and dispersion on signals likely to propagate in the context of the dynamics of four-wave mixing. Thus, we use an indirect resolution technique based on the use of...In this article, we study the impacts of nonlinearity and dispersion on signals likely to propagate in the context of the dynamics of four-wave mixing. Thus, we use an indirect resolution technique based on the use of the iB-function to first decouple the nonlinear partial differential equations that govern the propagation dynamics in this case, and subsequently solve them to propose some prototype solutions. These analytical solutions have been obtained;we check the impact of nonlinearity and dispersion. The interest of this work lies not only in the resolution of the partial differential equations that govern the dynamics of wave propagation in this case since these equations not at all easy to integrate analytically and their analytical solutions are very rare, in other words, we propose analytically the solutions of the nonlinear coupled partial differential equations which govern the dynamics of four-wave mixing in optical fibers. Beyond the physical interest of this work, there is also an appreciable mathematical interest.展开更多
文摘In this paper, some sufficient conditions are obtained for the oscillation for solutions of systems of high order partial differential equations of neutral type.
文摘In this paper we study the forced oscillations of boundary value problems of a class of higher order functional partial differential equations.The principal tool is an everaging techniqe which enables one to establish oscillation in terms of related functional differential inequallities.
文摘In this paper, sane sufficient conditions are obtained for the oscillation for solutions of systems of high order partial differential equations of neutral type.
基金Supported by the Natural Science Foundation of China(10471086)Supported by the Science Research Foundation of Department of Education of Hunan Province(07C164)
文摘In this paper,by making use of the calculous technique and some results of the impulsive differential inequality,oscillatory properties of the solutions of certain nonlinear impulsive delay hyperbolic partial differential equations with nonlinear diffusion coefficient are investigated.Sufficient conditions for oscillations of such equations are obtained.
基金Supported by Natural Science Foundation of Hebei Province(102160) and Natural Science of Education office in Hebei Province (2004123),
文摘This paper is concerned with the oscillations of neutral hyperbolic partial differential equations with delays. Necessary and sufficient, conditions are obtained for the oscillations of all solutions of the equations, and these results are illustrated by some examples.
基金the Natural Science Foundation of Hunan Province(10471086)the Science Research Foundation of Administration of Education of Hunan Province(07C164)
文摘In this paper, some sufficient conditions are obtained for the oscillation of solutions for a class of second order nonlinear neutral partial differential equations with continuous distribution delay under Robin and Dirichlet's boundary value conditions.
文摘The oscillation theory of functional differential equations (FDEs) is surveyed including (ⅰ) formulation of oscillation problems; (ⅱ) a brief history of the oscillation theory of FDEs; (ⅲ) main topics in the oscillation theory of FDEs; (ⅳ) open problems in the oscillation theory of FDEs.
基金Project supported by the Science Foundation of Yunnan.
文摘In this paper we study the oscillations for a class of functional differential inequalities. By using these properties some forced oscillations to the boundary value problems of functional partial differential equations are established.
文摘In this work,stability with respect to part of the variables of nonlinear impulsive Caputo fractional differential equations is investigated.Some effective sufficient conditions of stability,uniform stability,asymptotic uniform stability and Mittag Leffler stability.The approach presented is based on the specially introduced piecewise continuous Lyapunov functions.Furthermore,some numerical examples are given to show the effectiveness of our obtained theoretical results.
文摘The aim of this work is to study the existence of a periodic solution for some neutral partial functional differential equations. Our approach is based on the R-boundedness of linear operators Lp-multipliers and UMD-spaces.
基金Supported by the National Natural Science Foundation of Guangdong Province under Grant (No.8451063101000730)
文摘We establish new Kamenev-type oscillation criteria for the half-linear partial differential equation with damping div(A(x)|| u||^p-2 u)+〈b(x),|| u||^p-2 u〉+c(x)|u|^p-2u=0(E)under quite general conditions. These results are extensions of the recent results developed by Sun [Y.C. Sun, New Kamenev-type oscillation criteria of second order nonlinear differential equations with damping, J. Math. Anal. Appl. 291 (2004) 341-351] for second order ordinary differential equations in a natural way, and improve some existing results in the literature. As applications, we illustrate our main results using two different types of half-linear partial differential equations.
文摘This paper investigates a class of even order functional differential equations with damped term,and derives two new oscillatory criteria of solution.
文摘Under a combined dominant condition, an open problem of complex oscillation for the equation \%w (k) +Aw=0\% is set, where \%k≥3, a(z)\% is a transcendental entire function.
文摘We consider the oscillation of a class fractional differential equation with Robin and Dirichlet boundary conditions. By generalized Riccati transformation technique and the differential inequality method, oscillation criteria for a class of nonlinear fractional differential equation are obtained.
文摘In this paper, some sufficient conditions for the oscillation for solutions to systems of n-th order partial functional differential equations are obtained.
文摘In this paper, the oscillatory behavior for high order nonlinear functional differential equations are studied by means of the Lebesgue measure. It is found that the nonoscillatory solutions only have two kinds on some conditions. And necessary conditions for the existence of each kind of nonoscillatory solutions are presented as well. At the same ime, some sufficient conditions for oscillatory solutions are also established.
文摘This article studies the development of two numerical techniques for solving convection-diffusion type partial integro-differential equation(PIDE)with a weakly singular kernel.Cubic trigonometric B-spline(CTBS)functions are used for interpolation in both methods.The first method is CTBS based collocation method which reduces the PIDE to an algebraic tridiagonal system of linear equations.The other method is CTBS based differential quadrature method which converts the PIDE to a system of ODEs by computing spatial derivatives as weighted sum of function values.An efficient tridiagonal solver is used for the solution of the linear system obtained in the first method as well as for determination of weighting coefficients in the second method.An explicit scheme is employed as time integrator to solve the system of ODEs obtained in the second method.The methods are tested with three nonhomogeneous problems for their validation.Stability,computational efficiency and numerical convergence of the methods are analyzed.Comparison of errors in approximations produced by the present methods versus different values of discretization parameters and convection-diffusion coefficients are made.Convection and diffusion dominant cases are discussed in terms of Peclet number.The results are also compared with cubic B-spline collocation method.
基金The project supported by National Natural Science Foundation of China under Grant Nos. 90511009 and 40305006 Cprrespondence author,
文摘In this paper, by applying the Jacobi elliptic function expansion method, the periodic solutions for two coupled nonlinear partial differential equations are obtained.
文摘Hessian matrices are square matrices consisting of all possible combinations of second partial derivatives of a scalar-valued initial function. As such, Hessian matrices may be treated as elementary matrix systems of linear second-order partial differential equations. This paper discusses the Hessian and its applications in optimization, and then proceeds to introduce and derive the notion of the Jaffa Transform, a new linear operator that directly maps a Hessian square matrix space to the initial corresponding scalar field in nth dimensional Euclidean space. The Jaffa Transform is examined, including the properties of the operator, the transform of notable matrices, and the existence of an inverse Jaffa Transform, which is, by definition, the Hessian matrix operator. The Laplace equation is then noted and investigated, particularly, the relation of the Laplace equation to Poisson’s equation, and the theoretical applications and correlations of harmonic functions to Hessian matrices. The paper concludes by introducing and explicating the Jaffa Theorem, a principle that declares the existence of harmonic Jaffa Transforms, which are, essentially, Jaffa Transform solutions to the Laplace partial differential equation.
文摘In this article, we study the impacts of nonlinearity and dispersion on signals likely to propagate in the context of the dynamics of four-wave mixing. Thus, we use an indirect resolution technique based on the use of the iB-function to first decouple the nonlinear partial differential equations that govern the propagation dynamics in this case, and subsequently solve them to propose some prototype solutions. These analytical solutions have been obtained;we check the impact of nonlinearity and dispersion. The interest of this work lies not only in the resolution of the partial differential equations that govern the dynamics of wave propagation in this case since these equations not at all easy to integrate analytically and their analytical solutions are very rare, in other words, we propose analytically the solutions of the nonlinear coupled partial differential equations which govern the dynamics of four-wave mixing in optical fibers. Beyond the physical interest of this work, there is also an appreciable mathematical interest.