We propose a mathematical model for determining the probability of meteorite origin, impacting the earth. Our method is based on axioms similar to both the complex networks and emergent gravity. As a consequence, we a...We propose a mathematical model for determining the probability of meteorite origin, impacting the earth. Our method is based on axioms similar to both the complex networks and emergent gravity. As a consequence, we are able to derive a link between complex networks and Newton’s gravity law, and as a possible application of our model we discuss several aspects of the Bacubirito meteorite. In particular, we analyze the possibility that the origin of this meteorite may be alpha Centauri system. Moreover, we find that in order for the Bacubirito meteorite to come from alpha Cen and be injected into our Solar System, its velocity must be reduced one order of magnitude of its ejected scape velocity from alpha Cen. There are several ways how this could happened, for example through collision with the Oort cloud objects (located outside the boundary of our Solar System), and/or through collisions within the Solar meteorites belt (located between Mars and Jupiter). We also argue that it may be interesting to study the Bacubirito meteorite from the perspective of the recently discovered Oumuamua object.展开更多
The origin of life on Earth remains enigmatic with diverse models and debates.Here we discuss essential requirements for the first emergence of life on our planet and propose the following nine requirements:(1)an ener...The origin of life on Earth remains enigmatic with diverse models and debates.Here we discuss essential requirements for the first emergence of life on our planet and propose the following nine requirements:(1)an energy source(ionizing radiation and thermal energy);(2)a supply of nutrients(P.K.REE.etc.);(3)a supply of life-constituting major elements;(4)a high concentration of reduced gases such as CH4,HCN and NH3;(5)dry-wet cycles to create membranes and polymerize RNA;(6)a non-toxic aqueous environment;(7)Na-poor water;(8)highly diversified environments,and(9)cyclic conditions,such as dayto-night,hot-to-cold etc.Based on these nine requirements,we evaluate previously proposed locations for the origin of Earth’s life,including:(1)Darwin’s"warm little pond",leading to a"prebiotic soup"for life;(2)panspermia or Neo-panspermia(succession model of panspermia);(3)transportation from/through Mars;(4)a deepsea hydrothermal system;(5)an on-land subduct ion-zone hot spring,and(6)a geyser systems driven by a natural nuclear reactor.We conclude that location(6)is the most ideal candidate for the o rigin point for Earth’s life because of its efficiency in continuously supplying both the energy and the necessary materials for life,thereby maintaining the essential"cradle"for its initial development.We also emphasize that falsifiable working hypothesis provides an important tool to evaluate one of the biggest mysteries of the universe-the origin of life.展开更多
文摘We propose a mathematical model for determining the probability of meteorite origin, impacting the earth. Our method is based on axioms similar to both the complex networks and emergent gravity. As a consequence, we are able to derive a link between complex networks and Newton’s gravity law, and as a possible application of our model we discuss several aspects of the Bacubirito meteorite. In particular, we analyze the possibility that the origin of this meteorite may be alpha Centauri system. Moreover, we find that in order for the Bacubirito meteorite to come from alpha Cen and be injected into our Solar System, its velocity must be reduced one order of magnitude of its ejected scape velocity from alpha Cen. There are several ways how this could happened, for example through collision with the Oort cloud objects (located outside the boundary of our Solar System), and/or through collisions within the Solar meteorites belt (located between Mars and Jupiter). We also argue that it may be interesting to study the Bacubirito meteorite from the perspective of the recently discovered Oumuamua object.
基金supported by MEXT KAKENHI:Grant-in-Aid for Scientific Research on Innovative Areas,Grant Numbers26106002,26106004,26106006the Ministry of Education and Science of the Russian Federation,Project No.14.Y26.31.0018
文摘The origin of life on Earth remains enigmatic with diverse models and debates.Here we discuss essential requirements for the first emergence of life on our planet and propose the following nine requirements:(1)an energy source(ionizing radiation and thermal energy);(2)a supply of nutrients(P.K.REE.etc.);(3)a supply of life-constituting major elements;(4)a high concentration of reduced gases such as CH4,HCN and NH3;(5)dry-wet cycles to create membranes and polymerize RNA;(6)a non-toxic aqueous environment;(7)Na-poor water;(8)highly diversified environments,and(9)cyclic conditions,such as dayto-night,hot-to-cold etc.Based on these nine requirements,we evaluate previously proposed locations for the origin of Earth’s life,including:(1)Darwin’s"warm little pond",leading to a"prebiotic soup"for life;(2)panspermia or Neo-panspermia(succession model of panspermia);(3)transportation from/through Mars;(4)a deepsea hydrothermal system;(5)an on-land subduct ion-zone hot spring,and(6)a geyser systems driven by a natural nuclear reactor.We conclude that location(6)is the most ideal candidate for the o rigin point for Earth’s life because of its efficiency in continuously supplying both the energy and the necessary materials for life,thereby maintaining the essential"cradle"for its initial development.We also emphasize that falsifiable working hypothesis provides an important tool to evaluate one of the biggest mysteries of the universe-the origin of life.