In this article, a model of a weed control threshold forecast system has been established, with related model solving, data checking, database setting up, and system engineering illustration. Moreover, it is tested by...In this article, a model of a weed control threshold forecast system has been established, with related model solving, data checking, database setting up, and system engineering illustration. Moreover, it is tested by a software with data from a sugar cane planting experimental field in Yunnan, China. The methodology behind the detailed system analysis, design, and engineering has been discussed. The issue of how to create a dynamic data-dependent forecast model of a threshold forecast system, whose threshold changes according to the change of planting environment has been solved. Hence an effective solution has been initiated for further development on an agricultural expert system.展开更多
In the present work, we investigate threshold characteristics of a single mode 1.55 μm InGaAsP vertical cavity surface emitting laser (VCSEL) with two different optical confinement structures. The device employs InGa...In the present work, we investigate threshold characteristics of a single mode 1.55 μm InGaAsP vertical cavity surface emitting laser (VCSEL) with two different optical confinement structures. The device employs InGaAsP active region, which is sandwiched between GaAs/AlGaAs and GaAs/AlAs distributed Bragg reflectors (DBRs). The optical confinement introduced by the oxide aperture or a single defect photonic crystal design with holes etched throughout the whole structure, is compared with previous work. Photonic crystal VCSEL shows 30.86% and 57.02% lower threshold current than that of the similar oxide confined VCSEL and previous results, respectively. This paper provides key results of the threshold characteristics, including the threshold current and the threshold power. Results suggest that, the 1.55 μm InGaAsP photonic crystal VCSEL seems to be the most optimal one for light sources in high performance optical communication systems.展开更多
由于用户级综合能源系统(integrated energy system,IES)的多元负荷序列之间复杂的耦合关系及易受外部因素影响等原因,综合能源系统多元负荷的精准预测面临很大困难。为此,提出一种基于Spearman相关性分析阈值寻优(threshold optimizati...由于用户级综合能源系统(integrated energy system,IES)的多元负荷序列之间复杂的耦合关系及易受外部因素影响等原因,综合能源系统多元负荷的精准预测面临很大困难。为此,提出一种基于Spearman相关性分析阈值寻优(threshold optimization,TO)和变分模态分解结合长短期记忆网络(variational mode decomposition based long short-term memory network,VMD-LSTM)的多元负荷预测方法。首先,使用斯皮尔曼等级(Spearman rank,SR)相关系数定量计算多元负荷间以及负荷与其他气候因素间的相关关系并通过循环寻优确定最优相关阈值,然后采用VMD算法将以最优阈值筛选出的负荷特征序列分解成更简单、平稳、有规律性的本征模态函数(intrinsic mode function,IMF)后与最优气象特征一起输入LSTM模型进行负荷预测。通过某用户级IES的实际数据对所提方法的有效性进行了验证,结果表明,所提方法能有效提高IES的多元负荷预测精度。展开更多
文摘In this article, a model of a weed control threshold forecast system has been established, with related model solving, data checking, database setting up, and system engineering illustration. Moreover, it is tested by a software with data from a sugar cane planting experimental field in Yunnan, China. The methodology behind the detailed system analysis, design, and engineering has been discussed. The issue of how to create a dynamic data-dependent forecast model of a threshold forecast system, whose threshold changes according to the change of planting environment has been solved. Hence an effective solution has been initiated for further development on an agricultural expert system.
文摘In the present work, we investigate threshold characteristics of a single mode 1.55 μm InGaAsP vertical cavity surface emitting laser (VCSEL) with two different optical confinement structures. The device employs InGaAsP active region, which is sandwiched between GaAs/AlGaAs and GaAs/AlAs distributed Bragg reflectors (DBRs). The optical confinement introduced by the oxide aperture or a single defect photonic crystal design with holes etched throughout the whole structure, is compared with previous work. Photonic crystal VCSEL shows 30.86% and 57.02% lower threshold current than that of the similar oxide confined VCSEL and previous results, respectively. This paper provides key results of the threshold characteristics, including the threshold current and the threshold power. Results suggest that, the 1.55 μm InGaAsP photonic crystal VCSEL seems to be the most optimal one for light sources in high performance optical communication systems.
文摘由于用户级综合能源系统(integrated energy system,IES)的多元负荷序列之间复杂的耦合关系及易受外部因素影响等原因,综合能源系统多元负荷的精准预测面临很大困难。为此,提出一种基于Spearman相关性分析阈值寻优(threshold optimization,TO)和变分模态分解结合长短期记忆网络(variational mode decomposition based long short-term memory network,VMD-LSTM)的多元负荷预测方法。首先,使用斯皮尔曼等级(Spearman rank,SR)相关系数定量计算多元负荷间以及负荷与其他气候因素间的相关关系并通过循环寻优确定最优相关阈值,然后采用VMD算法将以最优阈值筛选出的负荷特征序列分解成更简单、平稳、有规律性的本征模态函数(intrinsic mode function,IMF)后与最优气象特征一起输入LSTM模型进行负荷预测。通过某用户级IES的实际数据对所提方法的有效性进行了验证,结果表明,所提方法能有效提高IES的多元负荷预测精度。
文摘5G新技术应用于可见光通信(Visible Light Communication,VLC)场景对系统容量以及频谱效率有了更高的要求,稀疏码多址接入(Sparse Code Multiple Access,SCMA)技术作为一种新型的非正交多址接入(Non-Orthgonal Multiple Access,NOMA)技术可作为解决方案。针对上述方案,搭建了VLC-SCMA系统,使得系统在相同的频谱资源下能够拥有更大的系统容量和频谱效率,同时为了降低系统复杂度,加快接收端进行多用户检测时的收敛速度,提出了基于串行改进下的部分外部信息传递的消息传递算法(Message Passing Algorithm Based on Serial Strategy for Partial External Information Transmission,SPEIT-MPA)。通过在迭代过程中设置门限值过滤掉携带信息量较少的外部信息点,利用串行改进使得算法迭代过程进一步简化。在VLC-SCMA系统中的仿真结果表明,对比原始算法,新算法可以在保证误码率(Bit Error Rate,BER)性能损失较少的前提下拥有更快的收敛速度,且算法复杂度随着信噪比(Signal to Noise Ratio,SNR)的增大明显降低。