The notions of decoupling zeros of positive discrete-time linear systems are introduced. The relationships between the decoupling zeros of standard and positive discrete-time linear systems are analyzed. It is shown t...The notions of decoupling zeros of positive discrete-time linear systems are introduced. The relationships between the decoupling zeros of standard and positive discrete-time linear systems are analyzed. It is shown that: 1) if the positive system has decoupling zeros then the corresponding standard system has also decoupling zeros, 2) the positive system may not have decoupling zeros when the corresponding standard system has decoupling zeros, 3) the positive and standard systems have the same decoupling zeros if the rank of reachability (observability) matrix is equal to the number of linearly independent monomial columns (rows) and some additional assumptions are satisfied.展开更多
Grazing bifurcation of a relative rotation system with backlash non-smooth characteristic is studied along with the change of the external excitation in this paper. Considering the oil film, backlash, time-varying sti...Grazing bifurcation of a relative rotation system with backlash non-smooth characteristic is studied along with the change of the external excitation in this paper. Considering the oil film, backlash, time-varying stiffness and time-varying error, the dynamical equation of a relative rotation system with a backlash non-smooth characteristic is deduced by applying the elastic hydrodynamic lubrication(EHL) and the Grubin theories. In the process of relative rotation, the occurrence of backlash will lead to the change of dynamic behaviors of the system, and the system will transform from the meshing state to the impact state. Thus, the zero-time discontinuous mapping(ZDM) and the Poincare mapping are deduced to analyze the local dynamic characteristics of the system before as well as after the moment that the backlash appears(i.e.,the grazing state). Meanwhile, the grazing bifurcation mechanism is analyzed theoretically by applying the impact and Floquet theories. Numerical simulations are also given, which confirm the analytical results.展开更多
The input time delay is always existent in the practical systems. Analysis of the delay phenomenon in a continuous-time domain is sophisticated. It is appropriate to obtain its corresponding discrete-time model for im...The input time delay is always existent in the practical systems. Analysis of the delay phenomenon in a continuous-time domain is sophisticated. It is appropriate to obtain its corresponding discrete-time model for implementation via digital computer. This paper proposes a new discretization method for calculating a sampled-data representation of nonlinear time-delayed non-affine systems. The proposed scheme provides a finite-dimensional representation for nonlinear systems with non-a^ne time-delayed input enabling existing nonlinear controller design techniques to be applied to them. The performance of the proposed discretization procedure is evaluated by using a nonlinear system with non-affine time-delayed input. For this nonlinear system, various time delay values are considered.展开更多
文摘The notions of decoupling zeros of positive discrete-time linear systems are introduced. The relationships between the decoupling zeros of standard and positive discrete-time linear systems are analyzed. It is shown that: 1) if the positive system has decoupling zeros then the corresponding standard system has also decoupling zeros, 2) the positive system may not have decoupling zeros when the corresponding standard system has decoupling zeros, 3) the positive and standard systems have the same decoupling zeros if the rank of reachability (observability) matrix is equal to the number of linearly independent monomial columns (rows) and some additional assumptions are satisfied.
基金Project supported by the National Natural Science Foundation of China(Grant No.61104040)the Natural Science Foundation of Hebei Province,China(Grant No.E2012203090)the University Innovation Team of Hebei Province Leading Talent Cultivation Project,China(Grant No.LJRC013)
文摘Grazing bifurcation of a relative rotation system with backlash non-smooth characteristic is studied along with the change of the external excitation in this paper. Considering the oil film, backlash, time-varying stiffness and time-varying error, the dynamical equation of a relative rotation system with a backlash non-smooth characteristic is deduced by applying the elastic hydrodynamic lubrication(EHL) and the Grubin theories. In the process of relative rotation, the occurrence of backlash will lead to the change of dynamic behaviors of the system, and the system will transform from the meshing state to the impact state. Thus, the zero-time discontinuous mapping(ZDM) and the Poincare mapping are deduced to analyze the local dynamic characteristics of the system before as well as after the moment that the backlash appears(i.e.,the grazing state). Meanwhile, the grazing bifurcation mechanism is analyzed theoretically by applying the impact and Floquet theories. Numerical simulations are also given, which confirm the analytical results.
基金supported by University Natural Science Research Project of Jiangsu Province (No. 10KJB510001)
文摘The input time delay is always existent in the practical systems. Analysis of the delay phenomenon in a continuous-time domain is sophisticated. It is appropriate to obtain its corresponding discrete-time model for implementation via digital computer. This paper proposes a new discretization method for calculating a sampled-data representation of nonlinear time-delayed non-affine systems. The proposed scheme provides a finite-dimensional representation for nonlinear systems with non-a^ne time-delayed input enabling existing nonlinear controller design techniques to be applied to them. The performance of the proposed discretization procedure is evaluated by using a nonlinear system with non-affine time-delayed input. For this nonlinear system, various time delay values are considered.
文摘高精度时间同步是任务关键型工业网络控制系统的核心支撑技术,针对工业环境中普遍存在周期性振动等扰动信号导致晶振频率漂移,影响时间同步精度的问题,基于扩展比例积分(Proportional integral,PI)观测器,提出一种新型的抗扰补偿器结构,用于消除周期性扰动的影响,并构建了相应的精细抗干扰反馈控制方法,用于实现高精度时间同步.与传统的扰动观测器相比,所提出的扩展PI抗扰补偿器克服了传统扰动观测器零点不变局限性,提出了零点配置方法,以充分利用闭环系统的传递函数矩阵(Transfer function matrix,TFM)在系统零点处降秩的特性,实现了对于特定频率扰动信号的补偿作用.并给出了所提出的控制器和抗扰补偿器的稳定性证明和控制器参数的稳定域.通过基于实测参数的无线网络仿真实验,验证了在5 g周期性振动干扰下,提出的方法明显优于传统滤波器和补偿器,达到了同步误差在4μs以内,实现了高精度时间同步.