The presence of numerous uncertainties in hybrid decision information systems(HDISs)renders attribute reduction a formidable task.Currently available attribute reduction algorithms,including those based on Pawlak attr...The presence of numerous uncertainties in hybrid decision information systems(HDISs)renders attribute reduction a formidable task.Currently available attribute reduction algorithms,including those based on Pawlak attribute importance,Skowron discernibility matrix,and information entropy,struggle to effectively manages multiple uncertainties simultaneously in HDISs like the precise measurement of disparities between nominal attribute values,and attributes with fuzzy boundaries and abnormal values.In order to address the aforementioned issues,this paper delves into the study of attribute reduction withinHDISs.First of all,a novel metric based on the decision attribute is introduced to solve the problem of accurately measuring the differences between nominal attribute values.The newly introduced distance metric has been christened the supervised distance that can effectively quantify the differences between the nominal attribute values.Then,based on the newly developed metric,a novel fuzzy relationship is defined from the perspective of“feedback on parity of attribute values to attribute sets”.This new fuzzy relationship serves as a valuable tool in addressing the challenges posed by abnormal attribute values.Furthermore,leveraging the newly introduced fuzzy relationship,the fuzzy conditional information entropy is defined as a solution to the challenges posed by fuzzy attributes.It effectively quantifies the uncertainty associated with fuzzy attribute values,thereby providing a robust framework for handling fuzzy information in hybrid information systems.Finally,an algorithm for attribute reduction utilizing the fuzzy conditional information entropy is presented.The experimental results on 12 datasets show that the average reduction rate of our algorithm reaches 84.04%,and the classification accuracy is improved by 3.91%compared to the original dataset,and by an average of 11.25%compared to the other 9 state-of-the-art reduction algorithms.The comprehensive analysis of these research results clearly indicates that our algorithm is highly effective in managing the intricate uncertainties inherent in hybrid data.展开更多
It is helpful for people to understand the essence of rough set theory to study the concepts and operations of rough set theory from its information view. In this paper we address knowledge expression and knowledge re...It is helpful for people to understand the essence of rough set theory to study the concepts and operations of rough set theory from its information view. In this paper we address knowledge expression and knowledge reduction in incomplete infolvnation systems from the information view of rough set theory. First, by extending information entropy-based measures in complete information systems, two new measures of incomplete entropy and incomplete conditional entropy are presented for incomplete information systems. And then, based on these measures the problem of knowledge reduction in incomplete information systems is analyzed and the reduct definitions in incomplete information system and incomplete decision table are proposed respectively. Finally, the reduct definitions based on incomplete entropy and the reduct definitions based on similarity relation are compared. Two equivalent relationships between them are proved by theorems and an in equivalent relationship between them is illustrated by an example. The work of this paper extends the research of rough set theory from information view to incomplete information systems and establishes the theoretical basis for seeking efficient algorithm of knowledge acquisition in incomplete information systems.展开更多
Calculations of the quantum information entropy have been extended to a non-analytically solvable situation. Specifically, we have investigated the information entropy for a one-dimensional system with a schematic "L...Calculations of the quantum information entropy have been extended to a non-analytically solvable situation. Specifically, we have investigated the information entropy for a one-dimensional system with a schematic "Landau" potential in a numerical way. Particularly, it is found that the phase transitional behavior of the system can be well expressed by the evolution of quantum information entropy. The calculated results also indicate that the position entropy S_x and the momentum entropy S_p at the critical point of phase transition may vary with the mass parameter M but their sum remains as a constant independent of M for a given excited state. In addition, the entropy uncertainty relation is proven to be robust during the whole process of the phase transition.展开更多
This paper deals with the time evolution of information entropy for a stochastic system with double singularities driven by quasimonochromatic noise. The dimension of the Fokker Planck equation is reduced by the linea...This paper deals with the time evolution of information entropy for a stochastic system with double singularities driven by quasimonochromatic noise. The dimension of the Fokker Planck equation is reduced by the linear transfor- mation. The exact expression of the time dependence of information entropy is obtained based on the definition of Shannon's information entropy. The relationships between the properties of dissipative parameters, system singularity strength parameter, quasimonochromatic noise, and their effects on information entropy are discussed.展开更多
The effects of the time delay on the upper bound of the time derivative of information entropy are investigated in a time-delayed dynamical system driven by correlated noise. Using the Markov approximation of the stoc...The effects of the time delay on the upper bound of the time derivative of information entropy are investigated in a time-delayed dynamical system driven by correlated noise. Using the Markov approximation of the stochastic delay differential equations and the Schwartz inequality principle, we obtain an analytical expression for the upper bound UB(t) of the time derivative of the information entropy. The results show that there is a critical value of T (delay time), and UB(t) presents opposite behaviours on difference sides of the critical value. For the case of the weak additive noise, T can induce a reentrance transition. Delay time T also causes a reversal behaviour in UB(t)-λplot, where λ denotes the degree of the correlation between the two noises.展开更多
Under uncertain environment, it is very difficult to measure the entropy of quantum information system, because there is no effective method to model the randomness. First, different from the traditional classic uncer...Under uncertain environment, it is very difficult to measure the entropy of quantum information system, because there is no effective method to model the randomness. First, different from the traditional classic uncertainty, a quantum uncertain model is proposed to simulate a quantum information system under uncertain environment, and to simplify the entropy measurement of quantum information system. Second, different from the classic random seed under uncertain environment which is often called as pseudo-random number, here the quantum random is employed to provide us a true random model for the entropy of quantum information system. Third, the complex interaction and entangling activity of uncertain factors of quantum information is modeled as quantum binary instead of classic binary, which can help us to evaluate the entropy of uncertain environment, to analyze the entropy divergence in quantum information system. This work presents a non-classic risk factor measurement for quantum information system and a helpful entropy measurement.展开更多
Fault detection caused by single event effect( SEE) in system was studied,and an improved fault detection algorithm by fusing multi-information entropy for detecting soft error was proposed based on multi-objective de...Fault detection caused by single event effect( SEE) in system was studied,and an improved fault detection algorithm by fusing multi-information entropy for detecting soft error was proposed based on multi-objective detection approach and classification management method. In the improved fault detection algorithm, the analysis model of posteriori information with corresponding multi-fault alternative detection points was formulated through correlation information matrix, and the maximum incremental information entropy was chosen as the classification principle for the optimal detection points. A system design example was given to prove the rationality and feasibility of this algorithm.This fault detection algorithm can achieve the purpose of fault detection and resource configuration with high efficiency.展开更多
The subversive nature of information war lies not only in the information itself, but also in the circulation and application of information. It has always been a challenge to quantitatively analyze the function and e...The subversive nature of information war lies not only in the information itself, but also in the circulation and application of information. It has always been a challenge to quantitatively analyze the function and effect of information flow through command, control, communications, computer, kill, intelligence,surveillance, reconnaissance (C4KISR) system. In this work, we propose a framework of force of information influence and the methods for calculating the force of information influence between C4KISR nodes of sensing, intelligence processing,decision making and fire attack. Specifically, the basic concept of force of information influence between nodes in C4KISR system is formally proposed and its mathematical definition is provided. Then, based on the information entropy theory, the model of force of information influence between C4KISR system nodes is constructed. Finally, the simulation experiments have been performed under an air defense and attack scenario. The experimental results show that, with the proposed force of information influence framework, we can effectively evaluate the contribution of information circulation through different C4KISR system nodes to the corresponding tasks. Our framework of force of information influence can also serve as an effective tool for the design and dynamic reconfiguration of C4KISR system architecture.展开更多
The entropy squeezing properties for a two-level atom interacting with a two-mode field via two differentcompeting transitions are investigated from a quantum information point of view.The influences of the initial st...The entropy squeezing properties for a two-level atom interacting with a two-mode field via two differentcompeting transitions are investigated from a quantum information point of view.The influences of the initial state of thesystem and the relative coupling strength between the atom and the field on the atomic information entropy squeezingare discussed.Our results show that the squeezed direction and the frequency of the information entropy squeezing canbe controlled by choosing the phase of the atom dipole and the relative competing strength of atom-field,respectively.We find that,under the same condition,no atomic variance squeezing is predicted from the HUR while optimal entropysqueezing is obtained from the EUR,so the quantum information entropy is a remarkable precision measure for theatomic squeezing in the considered system.展开更多
We analyze oxidative activity of DNA due to fluorescence of chromosomes inside cells, using flow cytometry method with nanometer spatial resolution. Statistics of fluorescence is presented in histogram as frequency di...We analyze oxidative activity of DNA due to fluorescence of chromosomes inside cells, using flow cytometry method with nanometer spatial resolution. Statistics of fluorescence is presented in histogram as frequency distributions of flashes in the dependence on their intensity and in distributions of Shannon entropy, which was defined on the base of normalized distribution of information in original histogram for frequency of flashes. We show that overall sum of entropy, i.e. total entropy E , for any histogram is invariant and has identical trends of changes all values of E(r) = lnr at reduction of histogram’ rank r. This invariance reflects informational homeostasis of chromosomes activity in multi-scale networks of entropy inside all cells in various samples of blood for DNA inside neutrophils, lymphocytes, inside all leukocytes of human and inside chicken erythrocytes for various dyes, colors and various excitations of fluorescence. Informational homeostasis of oxidative activity of 3D DNA in the full set of chromosomes inside living cells exists for any Shannon-Weaver index of biodiversity of cells, at any state of health different beings. Regulation perturbations in information activity DNA provides informational adaptability and vitality of cells at homeostasis support. Noises of entropy, during regulation of informational homeostasis, depend on the states of health in real time. The main structural reconstructions of chromosomal correlations, corresponding to self-regulation of homeostasis, occur in the most large-scale networks of entropy, for rank r<32. We show that stability of homeostasis is supported by activity of all 46 chromosomes inside cells. Patterns, hidden switching and branching in sequences of averages of H?lder and central moments for noises in regulation of homeostasis define new opportunities in diagnostics of health and immunity. All people and all aerobic beings have one overall homeostatic level for countdown of information activity of DNA inside cells. We noted very bad and dangerous properties of artificial cells with other levels of informational homeostasis for all aerobic beings in foods, medical treatment and in biotechnologies.展开更多
Yangtze Estuary Tidal Wetlands Geographic Information System (YETWGIS) is a comprehensive software system for environmental management and decision of Yangtze estuary tidal wetlands. Based on MapObjects components tec...Yangtze Estuary Tidal Wetlands Geographic Information System (YETWGIS) is a comprehensive software system for environmental management and decision of Yangtze estuary tidal wetlands. Based on MapObjects components technology, Data Mining technology, mathematical modeling method and Visual Basic language, this software system has many functions such as displaying, editing, querying and searching, spatial statistics and analysis, thematic map compiling, and environmental quality evaluation. This paper firstly outlined the system structure, key techniques, and achieving methods of YETWGIS, and then, described the core modules (the thematic map compiling module and environmental quality evaluation model module) in detail. In addition, based on information entropy model, it thoroughly discussed the methods of environmental quality evaluation and indicators' weight calculation. Finally, by using YETWGIS, this paper analyzed the spatial distribution characteristics of Heavy Metal and Persistent Organic Pollutants (POPs) of the Yangtze estuary tidal wetlands in 2002, and evaluated the environmental quality of the Yangtze estuary tidal wetlands in 2003.展开更多
This paper presents a method for detecting the small infrared target under complex background. An algorithm, named local mutation weighted information entropy (LMWIE), is proposed to suppress background. Then, the g...This paper presents a method for detecting the small infrared target under complex background. An algorithm, named local mutation weighted information entropy (LMWIE), is proposed to suppress background. Then, the grey value of targets is enhanced by calculating the local energy. Image segmentation based on the adaptive threshold is used to solve the problems that the grey value of noise is enhanced with the grey value improvement of targets. Experimental results show that compared with the adaptive Butterworth high-pass filter method, the proposed algorithm is more effective and faster for the infrared small target detection.展开更多
Configurational information entropy(CIE)theory was employed to determine the neutron-skin thickness of neutron-rich calcium isotopes.The nuclear density distributions and fragment cross sections in 350 MeV/u ^(40-60)C...Configurational information entropy(CIE)theory was employed to determine the neutron-skin thickness of neutron-rich calcium isotopes.The nuclear density distributions and fragment cross sections in 350 MeV/u ^(40-60)Ca+^(9)Be projectile fragmentation reactions were calculated using a modified statistical abrasion-ablation model.CIE quantities were determined from the nuclear density,isotopic,mass,and charge distributions.The linear correlations between the CIE determined using the isotopic,mass,and charge distributions and the neutron-skin thickness of the projectile nucleus show that CIE provides new methods to extract the neutron-skin thickness of neutron-rich nuclei.展开更多
Fuzzy entropy was designed for non convex fuzzy membership function using well known Hamming distance measure.The proposed fuzzy entropy had the same structure as that of convex fuzzy membership case.Design procedure ...Fuzzy entropy was designed for non convex fuzzy membership function using well known Hamming distance measure.The proposed fuzzy entropy had the same structure as that of convex fuzzy membership case.Design procedure of fuzzy entropy was proposed by considering fuzzy membership through distance measure,and the obtained results contained more flexibility than the general fuzzy membership function.Furthermore,characteristic analyses for non convex function were also illustrated.Analyses on the mutual information were carried out through the proposed fuzzy entropy and similarity measure,which was also dual structure of fuzzy entropy.By the illustrative example,mutual information was discussed.展开更多
Configurational information entropy(CIE)analysis has been shown to be applicable for determining the neutron skin thickness(δnp)of neutron-rich nuclei from fragment production in projectile fragmentation reactions.Th...Configurational information entropy(CIE)analysis has been shown to be applicable for determining the neutron skin thickness(δnp)of neutron-rich nuclei from fragment production in projectile fragmentation reactions.The BNN+FRACS machine learning model was adopted to predict the fragment mass cross-sections(σ_(A))of the projectile fragmentation reactions induced by calcium isotopes from ^(36)Ca to ^(56)Ca on a ^(9)Be target at 140MeV/u.The fast Fourier transform was adopted to decompose the possible information compositions inσA distributions and determine the quantity of CIE(S_(A)[f]).It was found that the range of fragments significantly influences the quantity of S_(A)[f],which results in different trends of S_(A)[f]~δnp correlation.The linear S_(A)[f]~δnp correlation in a previous study[Nucl.Sci.Tech.33,6(2022)]could be reproduced using fragments with relatively large mass fragments,which verifies that S_(A)[f]determined from fragmentσAis sensitive to the neutron skin thickness of neutron-rich isotopes.展开更多
In this paper,there are discussed the informational functions of the living structures,analyzing the properties of the simplest eukaryotic cell as an example of a structural unit of the living unicellular and multicel...In this paper,there are discussed the informational functions of the living structures,analyzing the properties of the simplest eukaryotic cell as an example of a structural unit of the living unicellular and multicellular systems.The initiation of this analysis starts from an older example of an imaginary mechanism,particularly that described by the Maxwell’s demon experiment,which along the history of the information development concepts accompanied the philosophic vision on the structuration of matter and of the living entities,showing that these are actually the result of the intervention of information on the matter available substrate.Particularly,it is shown that the deoxyribonucleic acid(DNA)structure is appropriate to store a large quantity of structural information,allowing the transfer of this information by transcription and translation mechanisms to proteins,which act as(re)structuration/transmission informational agents,or the generation of a new cellular daughter structure by a replication process.On the basis of the theory of information in communication channels,applicable also in biological systems,it was discussed the followed line for the evaluation of the quantity of structural information in various cells,demonstrating the evolution of organism complexity by the increase of the structural information quantity from unicellular(bacterium)to human cell.Applying a natural strategy of entropy lowering mainly by heat elimination,folding protein structuration and compartmentalization on the evolutionary scale,the living structures act as dynamic entities assuring their self-organizational structure by a permanent change of matter,energy and information with the environment in an efficient way,following a negative entropic process by internal structuration,similarly with Maxwell’s demon work.It is shown that to assure such a communication with external and internal intracellular structure,it was necessary the development of an own info-operational system of communication and decision,in which the operational“Yes/No”decisional binary(Bit)unit is essential.These revolutionary results show that the cell unit complies with the similar informational functions like the multicellular structure of the human body,organized in seven-type informational components,allowing the informational modeling of the activity of the living biologic structures and the opening of a shortcutting way to mimic the biologic functions in artificial cells.展开更多
Utilizing channel reciprocity, time reversal(TR) technique increases the signal-to-noise ratio(SNR) at the receiver with very low transmitter complexity in complex multipath environment. Present research works abo...Utilizing channel reciprocity, time reversal(TR) technique increases the signal-to-noise ratio(SNR) at the receiver with very low transmitter complexity in complex multipath environment. Present research works about TR multiple-input multiple-output(MIMO) communication all focus on the system implementation and network building. The aim of this work is to analyze the influence of antenna coupling on the capacity of wideband TR MIMO system, which is a realistic question in designing a practical communication system. It turns out that antenna coupling stabilizes the capacity in a small variation range with statistical wideband channel response. Meanwhile, antenna coupling only causes a slight detriment to the channel capacity in a wideband TR MIMO system. Comparatively, uncorrelated stochastic channels without coupling exhibit a wider range of random capacity distribution which greatly depends on the statistical channel. The conclusions drawn from information difference entropy theory provide a guideline for designing better high-performance wideband TR MIMO communication systems.展开更多
A stochastic dissipative dynamical system driven by non-Gaussian noise is investigated. A general approximate Fokker-Planck equation of the system is derived through a path-integral approach. Based on the definition o...A stochastic dissipative dynamical system driven by non-Gaussian noise is investigated. A general approximate Fokker-Planck equation of the system is derived through a path-integral approach. Based on the definition of Shannon's information entropy, the exact time dependence of entropy flux and entropy production of the system is calculated both in the absence and in the presence of non-equilibrium constraint. The present calculation can be used to interpret the interplay of the dissipative constant and non-Gaussian noise on the entropy flux and entropy production.展开更多
In this paper,we introduce and investigate the mutual information and relative entropy on the sequentialeffect algebra,we also give a comparison of these mutual information and relative entropy with the classical ones...In this paper,we introduce and investigate the mutual information and relative entropy on the sequentialeffect algebra,we also give a comparison of these mutual information and relative entropy with the classical ones by thevenn diagrams.Finally,a nice example shows that the entropies of sequential effect algebra depend extremely on theorder of its sequential product.展开更多
Incremental image compression techniques using priori information are of significance to deal with the explosively increasing remote-sensing image data. However, the potential benefi ts of priori information are still...Incremental image compression techniques using priori information are of significance to deal with the explosively increasing remote-sensing image data. However, the potential benefi ts of priori information are still to be evaluated quantitatively for effi cient compression scheme designing. In this paper, we present a k-nearest neighbor(k-NN) based bypass image entropy estimation scheme, together with the corresponding mutual information estimation method. Firstly, we apply the k-NN entropy estimation theory to split image blocks, describing block-wise intra-frame spatial correlation while avoiding the curse of dimensionality. Secondly, we propose the corresponding mutual information estimator based on feature-based image calibration and straight-forward correlation enhancement. The estimator is designed to evaluate the compression performance gain of using priori information. Numerical results on natural and remote-sensing images show that the proposed scheme obtains an estimation accuracy gain by 10% compared with conventional image entropy estimators. Furthermore, experimental results demonstrate both the effectiveness of the proposed mutual information evaluation scheme, and the quantitative incremental compressibility by using the priori remote-sensing frames.展开更多
基金Anhui Province Natural Science Research Project of Colleges and Universities(2023AH040321)Excellent Scientific Research and Innovation Team of Anhui Colleges(2022AH010098).
文摘The presence of numerous uncertainties in hybrid decision information systems(HDISs)renders attribute reduction a formidable task.Currently available attribute reduction algorithms,including those based on Pawlak attribute importance,Skowron discernibility matrix,and information entropy,struggle to effectively manages multiple uncertainties simultaneously in HDISs like the precise measurement of disparities between nominal attribute values,and attributes with fuzzy boundaries and abnormal values.In order to address the aforementioned issues,this paper delves into the study of attribute reduction withinHDISs.First of all,a novel metric based on the decision attribute is introduced to solve the problem of accurately measuring the differences between nominal attribute values.The newly introduced distance metric has been christened the supervised distance that can effectively quantify the differences between the nominal attribute values.Then,based on the newly developed metric,a novel fuzzy relationship is defined from the perspective of“feedback on parity of attribute values to attribute sets”.This new fuzzy relationship serves as a valuable tool in addressing the challenges posed by abnormal attribute values.Furthermore,leveraging the newly introduced fuzzy relationship,the fuzzy conditional information entropy is defined as a solution to the challenges posed by fuzzy attributes.It effectively quantifies the uncertainty associated with fuzzy attribute values,thereby providing a robust framework for handling fuzzy information in hybrid information systems.Finally,an algorithm for attribute reduction utilizing the fuzzy conditional information entropy is presented.The experimental results on 12 datasets show that the average reduction rate of our algorithm reaches 84.04%,and the classification accuracy is improved by 3.91%compared to the original dataset,and by an average of 11.25%compared to the other 9 state-of-the-art reduction algorithms.The comprehensive analysis of these research results clearly indicates that our algorithm is highly effective in managing the intricate uncertainties inherent in hybrid data.
基金Sponsored by the Youth Natural Science Foundation of Yantai Normal University.
文摘It is helpful for people to understand the essence of rough set theory to study the concepts and operations of rough set theory from its information view. In this paper we address knowledge expression and knowledge reduction in incomplete infolvnation systems from the information view of rough set theory. First, by extending information entropy-based measures in complete information systems, two new measures of incomplete entropy and incomplete conditional entropy are presented for incomplete information systems. And then, based on these measures the problem of knowledge reduction in incomplete information systems is analyzed and the reduct definitions in incomplete information system and incomplete decision table are proposed respectively. Finally, the reduct definitions based on incomplete entropy and the reduct definitions based on similarity relation are compared. Two equivalent relationships between them are proved by theorems and an in equivalent relationship between them is illustrated by an example. The work of this paper extends the research of rough set theory from information view to incomplete information systems and establishes the theoretical basis for seeking efficient algorithm of knowledge acquisition in incomplete information systems.
基金Project supported by the National Natural Science Foundation of China(Grant No.11375005)partially by 20150964-SIP-IPN,Mexico
文摘Calculations of the quantum information entropy have been extended to a non-analytically solvable situation. Specifically, we have investigated the information entropy for a one-dimensional system with a schematic "Landau" potential in a numerical way. Particularly, it is found that the phase transitional behavior of the system can be well expressed by the evolution of quantum information entropy. The calculated results also indicate that the position entropy S_x and the momentum entropy S_p at the critical point of phase transition may vary with the mass parameter M but their sum remains as a constant independent of M for a given excited state. In addition, the entropy uncertainty relation is proven to be robust during the whole process of the phase transition.
基金Project supported by the National Natural Science Foundation of China(Grant No.11102132)
文摘This paper deals with the time evolution of information entropy for a stochastic system with double singularities driven by quasimonochromatic noise. The dimension of the Fokker Planck equation is reduced by the linear transfor- mation. The exact expression of the time dependence of information entropy is obtained based on the definition of Shannon's information entropy. The relationships between the properties of dissipative parameters, system singularity strength parameter, quasimonochromatic noise, and their effects on information entropy are discussed.
基金supported by the National Natural Science Foundation of China(Grant No.10865006)the Science Foundation of Yunnan University,China(Grant No.2009A01z)+1 种基金the Natural Science Foundation of Shaanxi Province,China(Grant No.2010JQ1014)the Science Foundation of Baoji University of Science and Arts of China(Grant No.ZK0954)
文摘The effects of the time delay on the upper bound of the time derivative of information entropy are investigated in a time-delayed dynamical system driven by correlated noise. Using the Markov approximation of the stochastic delay differential equations and the Schwartz inequality principle, we obtain an analytical expression for the upper bound UB(t) of the time derivative of the information entropy. The results show that there is a critical value of T (delay time), and UB(t) presents opposite behaviours on difference sides of the critical value. For the case of the weak additive noise, T can induce a reentrance transition. Delay time T also causes a reversal behaviour in UB(t)-λplot, where λ denotes the degree of the correlation between the two noises.
文摘Under uncertain environment, it is very difficult to measure the entropy of quantum information system, because there is no effective method to model the randomness. First, different from the traditional classic uncertainty, a quantum uncertain model is proposed to simulate a quantum information system under uncertain environment, and to simplify the entropy measurement of quantum information system. Second, different from the classic random seed under uncertain environment which is often called as pseudo-random number, here the quantum random is employed to provide us a true random model for the entropy of quantum information system. Third, the complex interaction and entangling activity of uncertain factors of quantum information is modeled as quantum binary instead of classic binary, which can help us to evaluate the entropy of uncertain environment, to analyze the entropy divergence in quantum information system. This work presents a non-classic risk factor measurement for quantum information system and a helpful entropy measurement.
文摘Fault detection caused by single event effect( SEE) in system was studied,and an improved fault detection algorithm by fusing multi-information entropy for detecting soft error was proposed based on multi-objective detection approach and classification management method. In the improved fault detection algorithm, the analysis model of posteriori information with corresponding multi-fault alternative detection points was formulated through correlation information matrix, and the maximum incremental information entropy was chosen as the classification principle for the optimal detection points. A system design example was given to prove the rationality and feasibility of this algorithm.This fault detection algorithm can achieve the purpose of fault detection and resource configuration with high efficiency.
基金supported by the Natural Science Foundation Research Plan of Shanxi Province (2023JCQN0728)。
文摘The subversive nature of information war lies not only in the information itself, but also in the circulation and application of information. It has always been a challenge to quantitatively analyze the function and effect of information flow through command, control, communications, computer, kill, intelligence,surveillance, reconnaissance (C4KISR) system. In this work, we propose a framework of force of information influence and the methods for calculating the force of information influence between C4KISR nodes of sensing, intelligence processing,decision making and fire attack. Specifically, the basic concept of force of information influence between nodes in C4KISR system is formally proposed and its mathematical definition is provided. Then, based on the information entropy theory, the model of force of information influence between C4KISR system nodes is constructed. Finally, the simulation experiments have been performed under an air defense and attack scenario. The experimental results show that, with the proposed force of information influence framework, we can effectively evaluate the contribution of information circulation through different C4KISR system nodes to the corresponding tasks. Our framework of force of information influence can also serve as an effective tool for the design and dynamic reconfiguration of C4KISR system architecture.
基金National Natural Science Foundation of China under Grant No:10374025the Education Department of Hunan Province of China under Grant No.06A038
文摘The entropy squeezing properties for a two-level atom interacting with a two-mode field via two differentcompeting transitions are investigated from a quantum information point of view.The influences of the initial state of thesystem and the relative coupling strength between the atom and the field on the atomic information entropy squeezingare discussed.Our results show that the squeezed direction and the frequency of the information entropy squeezing canbe controlled by choosing the phase of the atom dipole and the relative competing strength of atom-field,respectively.We find that,under the same condition,no atomic variance squeezing is predicted from the HUR while optimal entropysqueezing is obtained from the EUR,so the quantum information entropy is a remarkable precision measure for theatomic squeezing in the considered system.
文摘We analyze oxidative activity of DNA due to fluorescence of chromosomes inside cells, using flow cytometry method with nanometer spatial resolution. Statistics of fluorescence is presented in histogram as frequency distributions of flashes in the dependence on their intensity and in distributions of Shannon entropy, which was defined on the base of normalized distribution of information in original histogram for frequency of flashes. We show that overall sum of entropy, i.e. total entropy E , for any histogram is invariant and has identical trends of changes all values of E(r) = lnr at reduction of histogram’ rank r. This invariance reflects informational homeostasis of chromosomes activity in multi-scale networks of entropy inside all cells in various samples of blood for DNA inside neutrophils, lymphocytes, inside all leukocytes of human and inside chicken erythrocytes for various dyes, colors and various excitations of fluorescence. Informational homeostasis of oxidative activity of 3D DNA in the full set of chromosomes inside living cells exists for any Shannon-Weaver index of biodiversity of cells, at any state of health different beings. Regulation perturbations in information activity DNA provides informational adaptability and vitality of cells at homeostasis support. Noises of entropy, during regulation of informational homeostasis, depend on the states of health in real time. The main structural reconstructions of chromosomal correlations, corresponding to self-regulation of homeostasis, occur in the most large-scale networks of entropy, for rank r<32. We show that stability of homeostasis is supported by activity of all 46 chromosomes inside cells. Patterns, hidden switching and branching in sequences of averages of H?lder and central moments for noises in regulation of homeostasis define new opportunities in diagnostics of health and immunity. All people and all aerobic beings have one overall homeostatic level for countdown of information activity of DNA inside cells. We noted very bad and dangerous properties of artificial cells with other levels of informational homeostasis for all aerobic beings in foods, medical treatment and in biotechnologies.
基金National Natural Science Foundation of China No.40131020 No.40173030 Shanghai Science Committee and Environmental Bureau Program Shanghai Basic Science Research Key Program No.02DJ14029 Foundation for the Excellent You
文摘Yangtze Estuary Tidal Wetlands Geographic Information System (YETWGIS) is a comprehensive software system for environmental management and decision of Yangtze estuary tidal wetlands. Based on MapObjects components technology, Data Mining technology, mathematical modeling method and Visual Basic language, this software system has many functions such as displaying, editing, querying and searching, spatial statistics and analysis, thematic map compiling, and environmental quality evaluation. This paper firstly outlined the system structure, key techniques, and achieving methods of YETWGIS, and then, described the core modules (the thematic map compiling module and environmental quality evaluation model module) in detail. In addition, based on information entropy model, it thoroughly discussed the methods of environmental quality evaluation and indicators' weight calculation. Finally, by using YETWGIS, this paper analyzed the spatial distribution characteristics of Heavy Metal and Persistent Organic Pollutants (POPs) of the Yangtze estuary tidal wetlands in 2002, and evaluated the environmental quality of the Yangtze estuary tidal wetlands in 2003.
基金supported by the National Natural Science Foundation of China (61171194)
文摘This paper presents a method for detecting the small infrared target under complex background. An algorithm, named local mutation weighted information entropy (LMWIE), is proposed to suppress background. Then, the grey value of targets is enhanced by calculating the local energy. Image segmentation based on the adaptive threshold is used to solve the problems that the grey value of noise is enhanced with the grey value improvement of targets. Experimental results show that compared with the adaptive Butterworth high-pass filter method, the proposed algorithm is more effective and faster for the infrared small target detection.
基金supported by the National Natural Science Foundation of China(Nos.11975091 and U1732135)the Program for Innovative Research Team(in Science and Technology)in University of Henan Province,China(No.21IRTSTHN011)。
文摘Configurational information entropy(CIE)theory was employed to determine the neutron-skin thickness of neutron-rich calcium isotopes.The nuclear density distributions and fragment cross sections in 350 MeV/u ^(40-60)Ca+^(9)Be projectile fragmentation reactions were calculated using a modified statistical abrasion-ablation model.CIE quantities were determined from the nuclear density,isotopic,mass,and charge distributions.The linear correlations between the CIE determined using the isotopic,mass,and charge distributions and the neutron-skin thickness of the projectile nucleus show that CIE provides new methods to extract the neutron-skin thickness of neutron-rich nuclei.
基金Work supported by the Second Stage of Brain Korea 21 Projects Work(2010-0020163) supported by the Priority Research Centers Program through the National Research Foundation (NRF) funded by the Ministry of Education,Science and Technology of Korea
文摘Fuzzy entropy was designed for non convex fuzzy membership function using well known Hamming distance measure.The proposed fuzzy entropy had the same structure as that of convex fuzzy membership case.Design procedure of fuzzy entropy was proposed by considering fuzzy membership through distance measure,and the obtained results contained more flexibility than the general fuzzy membership function.Furthermore,characteristic analyses for non convex function were also illustrated.Analyses on the mutual information were carried out through the proposed fuzzy entropy and similarity measure,which was also dual structure of fuzzy entropy.By the illustrative example,mutual information was discussed.
基金the National Natural Science Foundation of China(No.11975091)the Program for Innovative Research Team(in Science and Technology)in the University of Henan Province,China(No.21IRTSTHN011).
文摘Configurational information entropy(CIE)analysis has been shown to be applicable for determining the neutron skin thickness(δnp)of neutron-rich nuclei from fragment production in projectile fragmentation reactions.The BNN+FRACS machine learning model was adopted to predict the fragment mass cross-sections(σ_(A))of the projectile fragmentation reactions induced by calcium isotopes from ^(36)Ca to ^(56)Ca on a ^(9)Be target at 140MeV/u.The fast Fourier transform was adopted to decompose the possible information compositions inσA distributions and determine the quantity of CIE(S_(A)[f]).It was found that the range of fragments significantly influences the quantity of S_(A)[f],which results in different trends of S_(A)[f]~δnp correlation.The linear S_(A)[f]~δnp correlation in a previous study[Nucl.Sci.Tech.33,6(2022)]could be reproduced using fragments with relatively large mass fragments,which verifies that S_(A)[f]determined from fragmentσAis sensitive to the neutron skin thickness of neutron-rich isotopes.
文摘In this paper,there are discussed the informational functions of the living structures,analyzing the properties of the simplest eukaryotic cell as an example of a structural unit of the living unicellular and multicellular systems.The initiation of this analysis starts from an older example of an imaginary mechanism,particularly that described by the Maxwell’s demon experiment,which along the history of the information development concepts accompanied the philosophic vision on the structuration of matter and of the living entities,showing that these are actually the result of the intervention of information on the matter available substrate.Particularly,it is shown that the deoxyribonucleic acid(DNA)structure is appropriate to store a large quantity of structural information,allowing the transfer of this information by transcription and translation mechanisms to proteins,which act as(re)structuration/transmission informational agents,or the generation of a new cellular daughter structure by a replication process.On the basis of the theory of information in communication channels,applicable also in biological systems,it was discussed the followed line for the evaluation of the quantity of structural information in various cells,demonstrating the evolution of organism complexity by the increase of the structural information quantity from unicellular(bacterium)to human cell.Applying a natural strategy of entropy lowering mainly by heat elimination,folding protein structuration and compartmentalization on the evolutionary scale,the living structures act as dynamic entities assuring their self-organizational structure by a permanent change of matter,energy and information with the environment in an efficient way,following a negative entropic process by internal structuration,similarly with Maxwell’s demon work.It is shown that to assure such a communication with external and internal intracellular structure,it was necessary the development of an own info-operational system of communication and decision,in which the operational“Yes/No”decisional binary(Bit)unit is essential.These revolutionary results show that the cell unit complies with the similar informational functions like the multicellular structure of the human body,organized in seven-type informational components,allowing the informational modeling of the activity of the living biologic structures and the opening of a shortcutting way to mimic the biologic functions in artificial cells.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61331007,61361166008,and 61401065)the Specialized Research Fund for the Doctoral Program of Higher Education of China(Grant No.20120185130001)
文摘Utilizing channel reciprocity, time reversal(TR) technique increases the signal-to-noise ratio(SNR) at the receiver with very low transmitter complexity in complex multipath environment. Present research works about TR multiple-input multiple-output(MIMO) communication all focus on the system implementation and network building. The aim of this work is to analyze the influence of antenna coupling on the capacity of wideband TR MIMO system, which is a realistic question in designing a practical communication system. It turns out that antenna coupling stabilizes the capacity in a small variation range with statistical wideband channel response. Meanwhile, antenna coupling only causes a slight detriment to the channel capacity in a wideband TR MIMO system. Comparatively, uncorrelated stochastic channels without coupling exhibit a wider range of random capacity distribution which greatly depends on the statistical channel. The conclusions drawn from information difference entropy theory provide a guideline for designing better high-performance wideband TR MIMO communication systems.
基金National Natural Science Foundation of China under Grant Nos.10472091,10332030,and 10502042
文摘A stochastic dissipative dynamical system driven by non-Gaussian noise is investigated. A general approximate Fokker-Planck equation of the system is derived through a path-integral approach. Based on the definition of Shannon's information entropy, the exact time dependence of entropy flux and entropy production of the system is calculated both in the absence and in the presence of non-equilibrium constraint. The present calculation can be used to interpret the interplay of the dissipative constant and non-Gaussian noise on the entropy flux and entropy production.
基金Supported by Research Foundation of Kumoh National Institute of Technology
文摘In this paper,we introduce and investigate the mutual information and relative entropy on the sequentialeffect algebra,we also give a comparison of these mutual information and relative entropy with the classical ones by thevenn diagrams.Finally,a nice example shows that the entropies of sequential effect algebra depend extremely on theorder of its sequential product.
基金supported by National Basic Research Project of China(2013CB329006)National Natural Science Foundation of China(No.61622110,No.61471220,No.91538107)
文摘Incremental image compression techniques using priori information are of significance to deal with the explosively increasing remote-sensing image data. However, the potential benefi ts of priori information are still to be evaluated quantitatively for effi cient compression scheme designing. In this paper, we present a k-nearest neighbor(k-NN) based bypass image entropy estimation scheme, together with the corresponding mutual information estimation method. Firstly, we apply the k-NN entropy estimation theory to split image blocks, describing block-wise intra-frame spatial correlation while avoiding the curse of dimensionality. Secondly, we propose the corresponding mutual information estimator based on feature-based image calibration and straight-forward correlation enhancement. The estimator is designed to evaluate the compression performance gain of using priori information. Numerical results on natural and remote-sensing images show that the proposed scheme obtains an estimation accuracy gain by 10% compared with conventional image entropy estimators. Furthermore, experimental results demonstrate both the effectiveness of the proposed mutual information evaluation scheme, and the quantitative incremental compressibility by using the priori remote-sensing frames.