期刊文献+
共找到121,359篇文章
< 1 2 250 >
每页显示 20 50 100
Network Security Enhanced with Deep Neural Network-Based Intrusion Detection System
1
作者 Fatma S.Alrayes Mohammed Zakariah +2 位作者 Syed Umar Amin Zafar Iqbal Khan Jehad Saad Alqurni 《Computers, Materials & Continua》 SCIE EI 2024年第7期1457-1490,共34页
This study describes improving network security by implementing and assessing an intrusion detection system(IDS)based on deep neural networks(DNNs).The paper investigates contemporary technical ways for enhancing intr... This study describes improving network security by implementing and assessing an intrusion detection system(IDS)based on deep neural networks(DNNs).The paper investigates contemporary technical ways for enhancing intrusion detection performance,given the vital relevance of safeguarding computer networks against harmful activity.The DNN-based IDS is trained and validated by the model using the NSL-KDD dataset,a popular benchmark for IDS research.The model performs well in both the training and validation stages,with 91.30%training accuracy and 94.38%validation accuracy.Thus,the model shows good learning and generalization capabilities with minor losses of 0.22 in training and 0.1553 in validation.Furthermore,for both macro and micro averages across class 0(normal)and class 1(anomalous)data,the study evaluates the model using a variety of assessment measures,such as accuracy scores,precision,recall,and F1 scores.The macro-average recall is 0.9422,the macro-average precision is 0.9482,and the accuracy scores are 0.942.Furthermore,macro-averaged F1 scores of 0.9245 for class 1 and 0.9434 for class 0 demonstrate the model’s ability to precisely identify anomalies precisely.The research also highlights how real-time threat monitoring and enhanced resistance against new online attacks may be achieved byDNN-based intrusion detection systems,which can significantly improve network security.The study underscores the critical function ofDNN-based IDS in contemporary cybersecurity procedures by setting the foundation for further developments in this field.Upcoming research aims to enhance intrusion detection systems by examining cooperative learning techniques and integrating up-to-date threat knowledge. 展开更多
关键词 MACHINE-LEARNING deep-Learning intrusion detection system security PRIVACY deep neural network NSL-KDD Dataset
下载PDF
An Intelligent SDN-IoT Enabled Intrusion Detection System for Healthcare Systems Using a Hybrid Deep Learning and Machine Learning Approach 被引量:1
2
作者 R Arthi S Krishnaveni Sherali Zeadally 《China Communications》 SCIE CSCD 2024年第10期267-287,共21页
The advent of pandemics such as COVID-19 significantly impacts human behaviour and lives every day.Therefore,it is essential to make medical services connected to internet,available in every remote location during the... The advent of pandemics such as COVID-19 significantly impacts human behaviour and lives every day.Therefore,it is essential to make medical services connected to internet,available in every remote location during these situations.Also,the security issues in the Internet of Medical Things(IoMT)used in these service,make the situation even more critical because cyberattacks on the medical devices might cause treatment delays or clinical failures.Hence,services in the healthcare ecosystem need rapid,uninterrupted,and secure facilities.The solution provided in this research addresses security concerns and services availability for patients with critical health in remote areas.This research aims to develop an intelligent Software Defined Networks(SDNs)enabled secure framework for IoT healthcare ecosystem.We propose a hybrid of machine learning and deep learning techniques(DNN+SVM)to identify network intrusions in the sensor-based healthcare data.In addition,this system can efficiently monitor connected devices and suspicious behaviours.Finally,we evaluate the performance of our proposed framework using various performance metrics based on the healthcare application scenarios.the experimental results show that the proposed approach effectively detects and mitigates attacks in the SDN-enabled IoT networks and performs better that other state-of-art-approaches. 展开更多
关键词 deep neural network healthcare intrusion detection system IOT machine learning software-defined networks
下载PDF
Deep structure of the Southeast Asian curved subduction system and its dynamic process
3
作者 Weiwei DING 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2024年第3期701-704,共4页
The deep structure,material circulation,and dynamic processes in the Southeast Asia have long been an elusive scientific puzzle due to the lack of systematic scientific observations and recognized theoretical models.B... The deep structure,material circulation,and dynamic processes in the Southeast Asia have long been an elusive scientific puzzle due to the lack of systematic scientific observations and recognized theoretical models.Based on the deep seismic tomography using long-period natural earthquake data,in this study,the deep structure and material circulation of the curved subduction system in Southeast Asia was studied,and the dynamic processes since 100 million years ago was reconstructed.It is pointed out that challenges still exist in the precise reconstruction of deep mantle structures of the study area,the influence of multi-stage subduction on deep material exchange and shallow magma activity,as well as the spatiotemporal evolution and coupling mechanism of multi-plate convergence.Future work should focus on high-resolution land-sea joint 3-D seismic tomography imaging of the curved subduction system in the Southeast Asia,combined with geochemical analysis and geodynamic modelling works. 展开更多
关键词 curved subduction system deep structure material recycling dynamic process Southeast Asia
下载PDF
Combined CNN-LSTM Deep Learning Algorithms for Recognizing Human Physical Activities in Large and Distributed Manners:A Recommendation System
4
作者 Ameni Ellouze Nesrine Kadri +1 位作者 Alaa Alaerjan Mohamed Ksantini 《Computers, Materials & Continua》 SCIE EI 2024年第4期351-372,共22页
Recognizing human activity(HAR)from data in a smartphone sensor plays an important role in the field of health to prevent chronic diseases.Daily and weekly physical activities are recorded on the smartphone and tell t... Recognizing human activity(HAR)from data in a smartphone sensor plays an important role in the field of health to prevent chronic diseases.Daily and weekly physical activities are recorded on the smartphone and tell the user whether he is moving well or not.Typically,smartphones and their associated sensing devices operate in distributed and unstable environments.Therefore,collecting their data and extracting useful information is a significant challenge.In this context,the aimof this paper is twofold:The first is to analyze human behavior based on the recognition of physical activities.Using the results of physical activity detection and classification,the second part aims to develop a health recommendation system to notify smartphone users about their healthy physical behavior related to their physical activities.This system is based on the calculation of calories burned by each user during physical activities.In this way,conclusions can be drawn about a person’s physical behavior by estimating the number of calories burned after evaluating data collected daily or even weekly following a series of physical workouts.To identify and classify human behavior our methodology is based on artificial intelligence models specifically deep learning techniques like Long Short-Term Memory(LSTM),stacked LSTM,and bidirectional LSTM.Since human activity data contains both spatial and temporal information,we proposed,in this paper,to use of an architecture allowing the extraction of the two types of information simultaneously.While Convolutional Neural Networks(CNN)has an architecture designed for spatial information,our idea is to combine CNN with LSTM to increase classification accuracy by taking into consideration the extraction of both spatial and temporal data.The results obtained achieved an accuracy of 96%.On the other side,the data learned by these algorithms is prone to error and uncertainty.To overcome this constraint and improve performance(96%),we proposed to use the fusion mechanisms.The last combines deep learning classifiers tomodel non-accurate and ambiguous data to obtain synthetic information to aid in decision-making.The Voting and Dempster-Shafer(DS)approaches are employed.The results showed that fused classifiers based on DS theory outperformed individual classifiers(96%)with the highest accuracy level of 98%.Also,the findings disclosed that participants engaging in physical activities are healthy,showcasing a disparity in the distribution of physical activities between men and women. 展开更多
关键词 Human physical activities smartphone sensors deep learning distributed monitoring recommendation system uncertainty HEALTHY CALORIES
下载PDF
Working condition recognition of sucker rod pumping system based on 4-segment time-frequency signature matrix and deep learning
5
作者 Yun-Peng He Hai-Bo Cheng +4 位作者 Peng Zeng Chuan-Zhi Zang Qing-Wei Dong Guang-Xi Wan Xiao-Ting Dong 《Petroleum Science》 SCIE EI CAS CSCD 2024年第1期641-653,共13页
High-precision and real-time diagnosis of sucker rod pumping system(SRPS)is important for quickly mastering oil well operations.Deep learning-based method for classifying the dynamometer card(DC)of oil wells is an eff... High-precision and real-time diagnosis of sucker rod pumping system(SRPS)is important for quickly mastering oil well operations.Deep learning-based method for classifying the dynamometer card(DC)of oil wells is an efficient diagnosis method.However,the input of the DC as a two-dimensional image into the deep learning framework suffers from low feature utilization and high computational effort.Additionally,different SRPSs in an oil field have various system parameters,and the same SRPS generates different DCs at different moments.Thus,there is heterogeneity in field data,which can dramatically impair the diagnostic accuracy.To solve the above problems,a working condition recognition method based on 4-segment time-frequency signature matrix(4S-TFSM)and deep learning is presented in this paper.First,the 4-segment time-frequency signature(4S-TFS)method that can reduce the computing power requirements is proposed for feature extraction of DC data.Subsequently,the 4S-TFSM is constructed by relative normalization and matrix calculation to synthesize the features of multiple data and solve the problem of data heterogeneity.Finally,a convolutional neural network(CNN),one of the deep learning frameworks,is used to determine the functioning conditions based on the 4S-TFSM.Experiments on field data verify that the proposed diagnostic method based on 4S-TFSM and CNN(4S-TFSM-CNN)can significantly improve the accuracy of working condition recognition with lower computational cost.To the best of our knowledge,this is the first work to discuss the effect of data heterogeneity on the working condition recognition performance of SRPS. 展开更多
关键词 Sucker-rod pumping system Dynamometer card Working condition recognition deep learning Time-frequency signature Time-frequency signature matrix
下载PDF
Extended Deep Learning Algorithm for Improved Brain Tumor Diagnosis System
6
作者 M.Adimoolam K.Maithili +7 位作者 N.M.Balamurugan R.Rajkumar S.Leelavathy Raju Kannadasan Mohd Anul Haq Ilyas Khan ElSayed M.Tag El Din Arfat Ahmad Khan 《Intelligent Automation & Soft Computing》 2024年第1期33-55,共23页
At present,the prediction of brain tumors is performed using Machine Learning(ML)and Deep Learning(DL)algorithms.Although various ML and DL algorithms are adapted to predict brain tumors to some range,some concerns st... At present,the prediction of brain tumors is performed using Machine Learning(ML)and Deep Learning(DL)algorithms.Although various ML and DL algorithms are adapted to predict brain tumors to some range,some concerns still need enhancement,particularly accuracy,sensitivity,false positive and false negative,to improve the brain tumor prediction system symmetrically.Therefore,this work proposed an Extended Deep Learning Algorithm(EDLA)to measure performance parameters such as accuracy,sensitivity,and false positive and false negative rates.In addition,these iterated measures were analyzed by comparing the EDLA method with the Convolutional Neural Network(CNN)way further using the SPSS tool,and respective graphical illustrations were shown.The results were that the mean performance measures for the proposed EDLA algorithm were calculated,and those measured were accuracy(97.665%),sensitivity(97.939%),false positive(3.012%),and false negative(3.182%)for ten iterations.Whereas in the case of the CNN,the algorithm means accuracy gained was 94.287%,mean sensitivity 95.612%,mean false positive 5.328%,and mean false negative 4.756%.These results show that the proposed EDLA method has outperformed existing algorithms,including CNN,and ensures symmetrically improved parameters.Thus EDLA algorithm introduces novelty concerning its performance and particular activation function.This proposed method will be utilized effectively in brain tumor detection in a precise and accurate manner.This algorithm would apply to brain tumor diagnosis and be involved in various medical diagnoses aftermodification.If the quantity of dataset records is enormous,then themethod’s computation power has to be updated. 展开更多
关键词 Brain tumor extended deep learning algorithm convolution neural network tumor detection deep learning
下载PDF
Intelligent 3D garment system of the human body based on deep spiking neural network
7
作者 Minghua JIANG Zhangyuan TIAN +5 位作者 Chenyu YU Yankang SHI Li LIU Tao PENG Xinrong HU Feng YU 《虚拟现实与智能硬件(中英文)》 EI 2024年第1期43-55,共13页
Background Intelligent garments,a burgeoning class of wearable devices,have extensive applications in domains such as sports training and medical rehabilitation.Nonetheless,existing research in the smart wearables dom... Background Intelligent garments,a burgeoning class of wearable devices,have extensive applications in domains such as sports training and medical rehabilitation.Nonetheless,existing research in the smart wearables domain predominantly emphasizes sensor functionality and quantity,often skipping crucial aspects related to user experience and interaction.Methods To address this gap,this study introduces a novel real-time 3D interactive system based on intelligent garments.The system utilizes lightweight sensor modules to collect human motion data and introduces a dual-stream fusion network based on pulsed neural units to classify and recognize human movements,thereby achieving real-time interaction between users and sensors.Additionally,the system incorporates 3D human visualization functionality,which visualizes sensor data and recognizes human actions as 3D models in real time,providing accurate and comprehensive visual feedback to help users better understand and analyze the details and features of human motion.This system has significant potential for applications in motion detection,medical monitoring,virtual reality,and other fields.The accurate classification of human actions contributes to the development of personalized training plans and injury prevention strategies.Conclusions This study has substantial implications in the domains of intelligent garments,human motion monitoring,and digital twin visualization.The advancement of this system is expected to propel the progress of wearable technology and foster a deeper comprehension of human motion. 展开更多
关键词 Intelligent garment system Internet of things Human action recognition deep learning 3D visualization
下载PDF
Deep learning for joint channel estimation and feedback in massive MIMO systems 被引量:1
8
作者 Jiajia Guo Tong Chen +3 位作者 Shi Jin Geoffrey Ye Li Xin Wang Xiaolin Hou 《Digital Communications and Networks》 SCIE CSCD 2024年第1期83-93,共11页
The great potentials of massive Multiple-Input Multiple-Output(MIMO)in Frequency Division Duplex(FDD)mode can be fully exploited when the downlink Channel State Information(CSI)is available at base stations.However,th... The great potentials of massive Multiple-Input Multiple-Output(MIMO)in Frequency Division Duplex(FDD)mode can be fully exploited when the downlink Channel State Information(CSI)is available at base stations.However,the accurate CsI is difficult to obtain due to the large amount of feedback overhead caused by massive antennas.In this paper,we propose a deep learning based joint channel estimation and feedback framework,which comprehensively realizes the estimation,compression,and reconstruction of downlink channels in FDD massive MIMO systems.Two networks are constructed to perform estimation and feedback explicitly and implicitly.The explicit network adopts a multi-Signal-to-Noise-Ratios(SNRs)technique to obtain a single trained channel estimation subnet that works well with different SNRs and employs a deep residual network to reconstruct the channels,while the implicit network directly compresses pilots and sends them back to reduce network parameters.Quantization module is also designed to generate data-bearing bitstreams.Simulation results show that the two proposed networks exhibit excellent performance of reconstruction and are robust to different environments and quantization errors. 展开更多
关键词 Channel estimation CSI feedback deep learning Massive MIMO FDD
下载PDF
Knowledge‐based deep learning system for classifying Alzheimer's disease for multi‐task learning
9
作者 Amol Dattatray Dhaygude Gaurav Kumar Ameta +7 位作者 Ihtiram Raza Khan Pavitar Parkash Singh Renato R.Maaliw III Natrayan Lakshmaiya Mohammad Shabaz Muhammad Attique Khan Hany S.Hussein Hammam Alshazly 《CAAI Transactions on Intelligence Technology》 SCIE EI 2024年第4期805-820,共16页
Deep learning has recently become a viable approach for classifying Alzheimer's disease(AD)in medical imaging.However,existing models struggle to efficiently extract features from medical images and may squander a... Deep learning has recently become a viable approach for classifying Alzheimer's disease(AD)in medical imaging.However,existing models struggle to efficiently extract features from medical images and may squander additional information resources for illness classification.To address these issues,a deep three‐dimensional convolutional neural network incorporating multi‐task learning and attention mechanisms is proposed.An upgraded primary C3D network is utilised to create rougher low‐level feature maps.It introduces a new convolution block that focuses on the structural aspects of the magnetORCID:ic resonance imaging image and another block that extracts attention weights unique to certain pixel positions in the feature map and multiplies them with the feature map output.Then,several fully connected layers are used to achieve multi‐task learning,generating three outputs,including the primary classification task.The other two outputs employ backpropagation during training to improve the primary classification job.Experimental findings show that the authors’proposed method outperforms current approaches for classifying AD,achieving enhanced classification accuracy and other in-dicators on the Alzheimer's disease Neuroimaging Initiative dataset.The authors demonstrate promise for future disease classification studies. 展开更多
关键词 CLASSIFICATION deep learning
下载PDF
A Deep Learning Method to Process Scattered Field Data in Biomedical Imaging System
10
作者 Jing Wang Naike Du Xiuzhu Ye 《Journal of Beijing Institute of Technology》 EI CAS 2024年第3期213-218,共6页
This paper proposed a deep-learning-based method to process the scattered field data of transmitting antenna,which is unmeasurable in inverse scattering system because the transmitting and receiving antennas are multi... This paper proposed a deep-learning-based method to process the scattered field data of transmitting antenna,which is unmeasurable in inverse scattering system because the transmitting and receiving antennas are multiplexed.A U-net convolutional neural network(CNN)is used to recover the scattered field data of each transmitting antenna.The numerical results proved that the proposed method can complete the scattered field data at the transmitting antenna which is unable to measure in the actual experiment and can also eliminate the reconstructed error caused by the loss of scattered field data. 展开更多
关键词 inverse problem scattered field deep learning
下载PDF
Social Media-Based Surveillance Systems for Health Informatics Using Machine and Deep Learning Techniques:A Comprehensive Review and Open Challenges
11
作者 Samina Amin Muhammad Ali Zeb +3 位作者 Hani Alshahrani Mohammed Hamdi Mohammad Alsulami Asadullah Shaikh 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第5期1167-1202,共36页
Social media(SM)based surveillance systems,combined with machine learning(ML)and deep learning(DL)techniques,have shown potential for early detection of epidemic outbreaks.This review discusses the current state of SM... Social media(SM)based surveillance systems,combined with machine learning(ML)and deep learning(DL)techniques,have shown potential for early detection of epidemic outbreaks.This review discusses the current state of SM-based surveillance methods for early epidemic outbreaks and the role of ML and DL in enhancing their performance.Since,every year,a large amount of data related to epidemic outbreaks,particularly Twitter data is generated by SM.This paper outlines the theme of SM analysis for tracking health-related issues and detecting epidemic outbreaks in SM,along with the ML and DL techniques that have been configured for the detection of epidemic outbreaks.DL has emerged as a promising ML technique that adaptsmultiple layers of representations or features of the data and yields state-of-the-art extrapolation results.In recent years,along with the success of ML and DL in many other application domains,both ML and DL are also popularly used in SM analysis.This paper aims to provide an overview of epidemic outbreaks in SM and then outlines a comprehensive analysis of ML and DL approaches and their existing applications in SM analysis.Finally,this review serves the purpose of offering suggestions,ideas,and proposals,along with highlighting the ongoing challenges in the field of early outbreak detection that still need to be addressed. 展开更多
关键词 Social media EPIDEMIC machine learning deep learning health informatics PANDEMIC
下载PDF
Deep Learning Based Signal Detection for Quadrature Spatial Modulation System
12
作者 Shu Dingyun Peng Yuyang +2 位作者 Yue Ming Fawaz AL-Hazemi Mohammad Meraj Mirza 《China Communications》 SCIE CSCD 2024年第10期78-85,共8页
With the development of communication systems, modulation methods are becoming more and more diverse. Among them, quadrature spatial modulation(QSM) is considered as one method with less capacity and high efficiency. ... With the development of communication systems, modulation methods are becoming more and more diverse. Among them, quadrature spatial modulation(QSM) is considered as one method with less capacity and high efficiency. In QSM, the traditional signal detection methods sometimes are unable to meet the actual requirement of low complexity of the system. Therefore, this paper proposes a signal detection scheme for QSM systems using deep learning to solve the complexity problem. Results from the simulations show that the bit error rate performance of the proposed deep learning-based detector is better than that of the zero-forcing(ZF) and minimum mean square error(MMSE) detectors, and similar to the maximum likelihood(ML) detector. Moreover, the proposed method requires less processing time than ZF, MMSE,and ML. 展开更多
关键词 bit error rate COMPLEXITY deep learning quadrature spatial modulation
下载PDF
Resource Allocation for Cognitive Network Slicing in PD-SCMA System Based on Two-Way Deep Reinforcement Learning
13
作者 Zhang Zhenyu Zhang Yong +1 位作者 Yuan Siyu Cheng Zhenjie 《China Communications》 SCIE CSCD 2024年第6期53-68,共16页
In this paper,we propose the Two-way Deep Reinforcement Learning(DRL)-Based resource allocation algorithm,which solves the problem of resource allocation in the cognitive downlink network based on the underlay mode.Se... In this paper,we propose the Two-way Deep Reinforcement Learning(DRL)-Based resource allocation algorithm,which solves the problem of resource allocation in the cognitive downlink network based on the underlay mode.Secondary users(SUs)in the cognitive network are multiplexed by a new Power Domain Sparse Code Multiple Access(PD-SCMA)scheme,and the physical resources of the cognitive base station are virtualized into two types of slices:enhanced mobile broadband(eMBB)slice and ultrareliable low latency communication(URLLC)slice.We design the Double Deep Q Network(DDQN)network output the optimal codebook assignment scheme and simultaneously use the Deep Deterministic Policy Gradient(DDPG)network output the optimal power allocation scheme.The objective is to jointly optimize the spectral efficiency of the system and the Quality of Service(QoS)of SUs.Simulation results show that the proposed algorithm outperforms the CNDDQN algorithm and modified JEERA algorithm in terms of spectral efficiency and QoS satisfaction.Additionally,compared with the Power Domain Non-orthogonal Multiple Access(PD-NOMA)slices and the Sparse Code Multiple Access(SCMA)slices,the PD-SCMA slices can dramatically enhance spectral efficiency and increase the number of accessible users. 展开更多
关键词 cognitive radio deep reinforcement learning network slicing power-domain non-orthogonal multiple access resource allocation
下载PDF
Deep learning-based automatic pipeline system for predicting lateral cervical lymph node metastasis in patients with papillary thyroid carcinoma using computed tomography:A multi-center study
14
作者 Pengyi Yu Cai Wang +8 位作者 Haicheng Zhang Guibin Zheng Chuanliang Jia Zhonglu Liu Qi Wang Yakui Mu Xin Yang Ning Mao Xicheng Song 《Chinese Journal of Cancer Research》 SCIE CAS CSCD 2024年第5期545-561,共17页
Objective:The assessment of lateral lymph node metastasis(LLNM)in patients with papillary thyroid carcinoma(PTC)holds great significance.This study aims to develop and evaluate a deep learning-based automatic pipeline... Objective:The assessment of lateral lymph node metastasis(LLNM)in patients with papillary thyroid carcinoma(PTC)holds great significance.This study aims to develop and evaluate a deep learning-based automatic pipeline system(DLAPS)for diagnosing LLNM in PTC using computed tomography(CT).Methods:A total of 1,266 lateral lymph nodes(LLNs)from 519 PTC patients who underwent CT examinations from January 2019 to November 2022 were included and divided into training and validation set,internal test set,pooled external test set,and prospective test set.The DLAPS consists of an auto-segmentation network based on RefineNet model and a classification network based on ensemble model(ResNet,Xception,and DenseNet).The performance of the DLAPS was compared with that of manually segmented DL models,the clinical model,and Node Reporting and Data System(Node-RADS).The improvement of radiologists’diagnostic performance under the DLAPS-assisted strategy was explored.In addition,bulk RNA-sequencing was conducted based on 12 LLNs to reveal the underlying biological basis of the DLAPS.Results:The DLAPS yielded good performance with area under the receiver operating characteristic curve(AUC)of 0.872,0.910,and 0.822 in the internal,pooled external,and prospective test sets,respectively.The DLAPS significantly outperformed clinical models(AUC 0.731,P<0.001)and Node-RADS(AUC 0.602,P<0.001)in the internal test set.Moreover,the performance of the DLAPS was comparable to that of the manually segmented deep learning(DL)model with AUCs ranging 0.814−0.901 in three test sets.Furthermore,the DLAPSassisted strategy improved the performance of radiologists and enhanced inter-observer consistency.In clinical situations,the rate of unnecessary LLN dissection decreased from 33.33%to 7.32%.Furthermore,the DLAPS was associated with the cell-cell conjunction in the microenvironment.Conclusions:Using CT images from PTC patients,the DLAPS could effectively segment and classify LLNs non-invasively,and this system had a good generalization ability and clinical applicability. 展开更多
关键词 Bulk RNA sequencing convolutional neural networks deep learning thyroid tumor lateral lymph node metastasis
下载PDF
Performance analysis of deep borehole heat exchangers for decarbonization of heating systems
15
作者 Andreas E.D.Lund 《Deep Underground Science and Engineering》 2024年第3期349-357,共9页
Meeting the climate change mitigation targets will require a substantial shift from fossil to clean fuels in the heating sector.Heat pumps with deep borehole exchangers are a promising solution to reduce emissions.Her... Meeting the climate change mitigation targets will require a substantial shift from fossil to clean fuels in the heating sector.Heat pumps with deep borehole exchangers are a promising solution to reduce emissions.Here the thermal behavior of deep borehole exchangers(DBHEs)ranging from 1 to 2 km was analyzed for various heat flow profiles.A strong correlation between thermal energy extraction and power output from DBHEs was found,also influenced by the heating profile employed.Longer operating time over the year typically resulted in higher energy production,while shorter one yielded higher average thermal power output,highlighting the importance of the choice of heating strategy and system design for optimal performance of DBHEs.Short breaks in operation for regenerating the borehole,for example,with waste heat,proved to be favorable for the performance yielding an overall heat output close to the same as with continuous extraction of heat.The results demonstrate the usefulness of deep boreholes for dense urban areas with less available space.As the heat production from a single DBHE in Finnish conditions ranges from half up to even a few GWh a year,the technology is best suitable for larger heat loads. 展开更多
关键词 clean energy deep borehole exchangers energy transition geothermal heat ground-coupled heat pump
下载PDF
A Systematic Literature Review of Machine Learning and Deep Learning Approaches for Spectral Image Classification in Agricultural Applications Using Aerial Photography
16
作者 Usman Khan Muhammad Khalid Khan +4 位作者 Muhammad Ayub Latif Muhammad Naveed Muhammad Mansoor Alam Salman A.Khan Mazliham Mohd Su’ud 《Computers, Materials & Continua》 SCIE EI 2024年第3期2967-3000,共34页
Recently,there has been a notable surge of interest in scientific research regarding spectral images.The potential of these images to revolutionize the digital photography industry,like aerial photography through Unma... Recently,there has been a notable surge of interest in scientific research regarding spectral images.The potential of these images to revolutionize the digital photography industry,like aerial photography through Unmanned Aerial Vehicles(UAVs),has captured considerable attention.One encouraging aspect is their combination with machine learning and deep learning algorithms,which have demonstrated remarkable outcomes in image classification.As a result of this powerful amalgamation,the adoption of spectral images has experienced exponential growth across various domains,with agriculture being one of the prominent beneficiaries.This paper presents an extensive survey encompassing multispectral and hyperspectral images,focusing on their applications for classification challenges in diverse agricultural areas,including plants,grains,fruits,and vegetables.By meticulously examining primary studies,we delve into the specific agricultural domains where multispectral and hyperspectral images have found practical use.Additionally,our attention is directed towards utilizing machine learning techniques for effectively classifying hyperspectral images within the agricultural context.The findings of our investigation reveal that deep learning and support vector machines have emerged as widely employed methods for hyperspectral image classification in agriculture.Nevertheless,we also shed light on the various issues and limitations of working with spectral images.This comprehensive analysis aims to provide valuable insights into the current state of spectral imaging in agriculture and its potential for future advancements. 展开更多
关键词 Machine learning deep learning unmanned aerial vehicles multi-spectral images image recognition object detection hyperspectral images aerial photography
下载PDF
Highway Foreign Body Intrusion Detection System Based on Deep Learning
17
作者 Zihang Wang Xudong Wang +2 位作者 Shaolong Wang Zhen Du Xudong Pan 《Journal of Electronic Research and Application》 2024年第6期1-7,共7页
This paper introduces the expressway intrusion detection system based on deep learning to improve traffic safety.The system adopts deep learning,image recognition,and foreign body detection technology to monitor the r... This paper introduces the expressway intrusion detection system based on deep learning to improve traffic safety.The system adopts deep learning,image recognition,and foreign body detection technology to monitor the road condition in real-time through lidar and binocular camera groups to detect and distance the foreign body on the road.The system visualizes the detection results on the onboard screen to assist the driver to avoid and improve the safety of highway driving.In addition,the system also includes emergency braking,blind spot monitoring,lane departure warning,and other functions.The system has wide application prospects and development potential and is expected to be widely used in the future,providing a strong guarantee for the safe operation of expressways in China. 展开更多
关键词 deep learning Assisted driving Traffic safety
下载PDF
Deep Learning-Based Control System Design for Emergency Vehicles through Intersections
18
作者 Dingru Li Yinghui He +1 位作者 Yuanbo Yang Jiale Xu 《Journal of Electronic Research and Application》 2024年第6期208-221,共14页
This paper addresses the challenge of integrating priority passage for emergency vehicles with optimal intersection control in modern urban traffic. It proposes an innovative strategy based on deep learning to enable ... This paper addresses the challenge of integrating priority passage for emergency vehicles with optimal intersection control in modern urban traffic. It proposes an innovative strategy based on deep learning to enable emergency vehicles to pass through intersections efficiently and safely. The research aims to develop a deep learning model that utilizes intersection violation monitoring cameras to identify emergency vehicles in real time. This system adjusts traffic signals to ensure the rapid passage of emergency vehicles while simultaneously optimizing the overall efficiency of the traffic system. In this study, OpenCV is used in combination with Convolutional Neural Networks (CNN) and Recurrent Neural Networks (RNN) to jointly complete complex image processing and analysis tasks, to realize the purpose of fast travel of emergency vehicles. At the end of this study, the principle of the You Only Look Once (YOLO) algorithm can be used to design a website and a mobile phone application (app) to enable private vehicles with emergency needs to realize emergency passage through the application, which is also of great significance to improve the overall level of urban traffic management, reduce traffic congestion and promote the development of related technologies. 展开更多
关键词 Emergency vehicle priority deep learning Signal light adjustment Traffic congestion reduction Trajectory optimization
下载PDF
A Deep Learning Based Approach for Context-Aware Multi-Criteria Recommender Systems
19
作者 Son-Lam VU Quang-Hung LE 《Computer Systems Science & Engineering》 SCIE EI 2023年第1期471-483,共13页
Recommender systems are similar to an informationfiltering system that helps identify items that best satisfy the users’demands based on their pre-ference profiles.Context-aware recommender systems(CARSs)and multi-cr... Recommender systems are similar to an informationfiltering system that helps identify items that best satisfy the users’demands based on their pre-ference profiles.Context-aware recommender systems(CARSs)and multi-criteria recommender systems(MCRSs)are extensions of traditional recommender sys-tems.CARSs have integrated additional contextual information such as time,place,and so on for providing better recommendations.However,the majority of CARSs use ratings as a unique criterion for building communities.Meanwhile,MCRSs utilize user preferences in multiple criteria to better generate recommen-dations.Up to now,how to exploit context in MCRSs is still an open issue.This paper proposes a novel approach,which relies on deep learning for context-aware multi-criteria recommender systems.We apply deep neural network(DNN)mod-els to predict the context-aware multi-criteria ratings and learn the aggregation function.We conduct experiments to evaluate the effect of this approach on the real-world dataset.A significant result is that our method outperforms other state-of-the-art methods for recommendation effectiveness. 展开更多
关键词 Recommender systems CONTEXT-AWARE MULTI-CRITERIA deep learning deep neural network
下载PDF
A Systematic Literature Review of Deep Learning Algorithms for Segmentation of the COVID-19 Infection
20
作者 Shroog Alshomrani Muhammad Arif Mohammed A.Al Ghamdi 《Computers, Materials & Continua》 SCIE EI 2023年第6期5717-5742,共26页
Coronavirus has infected more than 753 million people,ranging in severity from one person to another,where more than six million infected people died worldwide.Computer-aided diagnostic(CAD)with artificial intelligenc... Coronavirus has infected more than 753 million people,ranging in severity from one person to another,where more than six million infected people died worldwide.Computer-aided diagnostic(CAD)with artificial intelligence(AI)showed outstanding performance in effectively diagnosing this virus in real-time.Computed tomography is a complementary diagnostic tool to clarify the damage of COVID-19 in the lungs even before symptoms appear in patients.This paper conducts a systematic literature review of deep learning methods for classifying the segmentation of COVID-19 infection in the lungs.We used the methodology of systematic reviews and meta-analyses(PRISMA)flow method.This research aims to systematically analyze the supervised deep learning methods,open resource datasets,data augmentation methods,and loss functions used for various segment shapes of COVID-19 infection from computerized tomography(CT)chest images.We have selected 56 primary studies relevant to the topic of the paper.We have compared different aspects of the algorithms used to segment infected areas in the CT images.Limitations to deep learning in the segmentation of infected areas still need to be developed to predict smaller regions of infection at the beginning of their appearance. 展开更多
关键词 COVID-19 segmentation chest CT images deep learning systematic review 2D and 3D supervised deep learning
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部