Line commutated converter based high-voltage direct-current(LCC-HVDC)transmissions are prone to harmonic oscillation under weak grids.Impedance modeling is an effective method for assessing interaction stability.First...Line commutated converter based high-voltage direct-current(LCC-HVDC)transmissions are prone to harmonic oscillation under weak grids.Impedance modeling is an effective method for assessing interaction stability.Firstly,this paper proposes an improved calculation method for the DC voltage and AC currents of commutation stations to address the complex linearization of the commutation process and constructs an overall harmonic state-space(HSS)model of an LCC-HVDC.Based on the HSS model,the closed-loop AC impedances on the LCC-HVDC sending and receiving ends are then derived and verified.The impedance characteristics of the LCC-HVDC are then analyzed to provide a physical explanation for the harmonic oscillation of the system.The effects of the grid strength and control parameters on system stability are also analyzed.To improve the impedance characteristics and operating stability of the LCC-HVDC system,a virtual impedance based stability enhancement control is proposed,and a parameter design method is considered to ensure satisfactory phase margins at both the sending and receiving ends.Finally,simulation results are presented to verify the validity of the impedance model and virtual impedance based stability enhancement control.展开更多
This study presents a harmonic transfer function(HTF)based single-input single-output(SISO)impedance modeling method.The method converts an HTF from phase domain to sequence domain and then transforms it into an SISO ...This study presents a harmonic transfer function(HTF)based single-input single-output(SISO)impedance modeling method.The method converts an HTF from phase domain to sequence domain and then transforms it into an SISO impedance while preserving the frequency coupling information of different sequences and different harmonics.Applications of this method to a line-commutated converter based high-voltage direct current(LCC-HVDC)system are presented.The results demonstrate the accuracy of the derived SISO impedance,and a truncation-order selection is suggested.The case study shows that the proposed method facilitates simpler impedance measurements and associated stability analysis.展开更多
The equivalent impedance parameters of loads have been widely used to identify and locate the harmonic sources.However,the existing calculation methods suffer from outliers caused by the zero-crossing of the denominat...The equivalent impedance parameters of loads have been widely used to identify and locate the harmonic sources.However,the existing calculation methods suffer from outliers caused by the zero-crossing of the denominator.These outliers can result in inaccuracy and unreliability of harmonic source location.To address this issue,this paper proposes an innovative method of equivalent impedance parameter calculation of three-phase symmetrical loads that avoid outliers.The correctness and effectiveness of the proposed method are verified by simulations on Simulink using actual monitoring data.The results show that the proposed method is not only simple and easy to implement but also highly accurate.展开更多
The effects of nonlinear loads on voltage quality represent an emerging concern for islanded microgrids.Existing research works have mainly focused on harmonic power sharing among multiple inverters,which ignores the ...The effects of nonlinear loads on voltage quality represent an emerging concern for islanded microgrids.Existing research works have mainly focused on harmonic power sharing among multiple inverters,which ignores the diversity of different inverters to mitigate harmonics from nonlinear loads.As a result,the voltage quality of microgrids cannot be effectively improved.To address this issue,this study proposes an adaptive harmonic virtual impedance(HVI)control for improving voltage quality of microgrids.Based on the premise that no inverter is overloaded,the main objective of the proposed control is to maximize harmonic power absorption by shaping the lowest output impedances of inverters.To achieve this,the proposed control is utilized to adjust the HVI of each inverter based on its operation conditions.In addition,the evaluation based on Monte Carlo harmonic power flow is designed to assess the performance of the proposed control in practice.Finally,comparative studies and control-in-the-loop experiments are conducted.展开更多
In order to investigate the joint torque-based Cartesian impedance control strategies and the influence of compensations for friction, an experimental study on the identification of friction parameters, friction compe...In order to investigate the joint torque-based Cartesian impedance control strategies and the influence of compensations for friction, an experimental study on the identification of friction parameters, friction compensation and the Cartesian impedance control are developed for the harmonic drive robot, by using the sensors available in the joint itself. Different from the conventional Cartesian impedance control schemes which are mostly based on the robot end force/torque information, five joint torque-based Cartesian impedance control schemes are considered, including the force-based schemes in Cartesian/joint space, the position-based schemes in Cartesian/joint space and the stiffness control. Four of them are verified by corresponding experiments with/without friction compensations. By comparison, it is found that the force-based impedance control strategy is more suitable than the position-based one for the robot based on joint torque feedback and the friction has even a positive effect on Cartesian impedance control stability.展开更多
Horizontal impedance functions of inclined single piles are measured experimentally for model soil-pile systems with both the effects of local soil nonlinearity and resonant characteristics.Two practical pile inclinat...Horizontal impedance functions of inclined single piles are measured experimentally for model soil-pile systems with both the effects of local soil nonlinearity and resonant characteristics.Two practical pile inclinations of 5掳 and 10掳 in addition to a vertical pile embedded in cohesionless soil and subjected to lateral harmonic pile head loadings for a wide range of frequencies are considered.Results obtained with low-to-high amplitude of lateral loadings on model soil-pile systems encased in a laminar shear box show that the local nonlinearities have a profound impact on the horizontal impedance functions of piles.Horizontal impedance functions of inclined piles are found to be smaller than the vertical pile and the values decrease as the angle of pile inclination increases.Distinct values of horizontal impedance functions are obtained for the 'positive' and 'negative' cycles of harmonic loadings,leading to asymmetric force-displacement relationships for the inclined piles.Validation of these experimental results is carried out through three-dimensional nonlinear finite element analyses,and the results from the numerical models are in good agreement with the experimental data.Sensitivity analyses conducted on the numerical models suggest that the consideration of local nonlinearity at the vicinity of the soil-pile interface influence the response of the soil-pile systems.展开更多
A sinusoidal voltage wave generator is proposed based on the use of micro-processor digital signals with programmable duty-cycles, with application to real-time Electrical Cell-substrate Impedance Spectroscopy (ECIS) ...A sinusoidal voltage wave generator is proposed based on the use of micro-processor digital signals with programmable duty-cycles, with application to real-time Electrical Cell-substrate Impedance Spectroscopy (ECIS) assays in cell cultures. The working principle relies on the time convolution of the programmed microcontroller (μC) digital signals. The expected frequency is easily tuned on the bio-impedance spectroscopy range [100 Hz, 1 MHz] thanks to the μC clock frequency selection. This system has been simulated and tested on the 8 bits μC Arduino<sup>TM </sup>Uno with ATmega328 version. Results obtained prove that only three digital signals are required to fit the general specification in ECIS experiments, below 1% THD accuracy, and show the appropriateness of the system for the real-time monitoring of this type of biological experiments.展开更多
The increasing use of power electronic devices can deteriorate the power quality by introducing voltage and current harmonics.In islanded microgrids,the presence of nonlinear loads can distort the point of common coup...The increasing use of power electronic devices can deteriorate the power quality by introducing voltage and current harmonics.In islanded microgrids,the presence of nonlinear loads can distort the point of common coupling(PCC)voltage,while the dead-time effect can also bring additional circulating current harmonics among parallel inverters.To simultaneously attenuate the PCC voltage harmonics and suppress the dead-time induced circulating current harmonics,this paper proposes a coordinated control strategy for harmonic mitigation of parallel inverters.The proposed control strategy allows inverter impedances to be properly reshaped at selective harmonic frequencies.As a consequence,the PCC voltage harmonics are filtered by the inverter operating in the harmonic compensation mode(HCM),whereas the dead-time induced circulating current harmonics are suppressed by the inverter operating in the harmonic rejection mode(HRM).Experimental results from an islanded microgrid prototype with two parallel inverters are provided to validate the effectiveness of the proposed control strategy.展开更多
The very high (up to 820% of the magnetoimpedance ratio) and sensitive nonlinear giant magnetoimpedance effect has been studied in the FeCo1Ni magnetic tubes electroplated onto Cu(3%)Be nonmagnetic wirefor frequencies...The very high (up to 820% of the magnetoimpedance ratio) and sensitive nonlinear giant magnetoimpedance effect has been studied in the FeCo1Ni magnetic tubes electroplated onto Cu(3%)Be nonmagnetic wirefor frequencies from 1-10MHz. Special annealing was carried out in order to induce the magnetic anisotropy. The high harmonic generation was observed and the harmonics show larger variations with the external magnetic field than the fundamental frequency. The super high sensitivity of the harmonics is promising as regards the increase of the sensitivity of magnetoimpedance sensors.展开更多
This paper described the impact of the electrical vehicle(EV) charging on the grid harmonic. In view of the randomness of the EV charging process, the harmonic admittance matrix method and superposition method were ...This paper described the impact of the electrical vehicle(EV) charging on the grid harmonic. In view of the randomness of the EV charging process, the harmonic admittance matrix method and superposition method were used to build the single and multiple EVs charging simulation model. By using Matlab as a simulation tool, we analyzed harmonic currents of single and multiple EVs chargers. The results show that the harmonic ratio is beyond the scope of the national harmonic standard. Finally a parallel hybrid active filter(PHAPF) was introduced for governance of harmonic.The experimental results show that net side harmonic currents are significantly reduced by using the PHAPF and meet the national standard GB/Z17625.6-2003 regulations limit.展开更多
The unbalanced impedance of the asymmetric 3-phase wind power permanent magnet synchronous generator(PMSG)compensated by external circuits in series with the 3-phase windings is investigated in this paper.The asymmetr...The unbalanced impedance of the asymmetric 3-phase wind power permanent magnet synchronous generator(PMSG)compensated by external circuits in series with the 3-phase windings is investigated in this paper.The asymmetric impedance includes the unbalanced resistances,unbalanced self-inductances,and unbalanced mutual inductances.From the perspective of the second harmonic inductances in dq-frame and from the perspective of the second harmonic power,it is theoretically demonstrated that the original asymmetric 3-phase system with asymmetric impedance can be modified to a balanced system by external circuits consisting of resistances and inductances.Therefore,the second harmonic power and DC bus voltage due to the asymmetries can be suppressed naturally without any software modifications.The feasibility of this compensation method is validated by elaborate experiments at different speeds and under different load condition,although the effectiveness might be slightly affected by the non-linearity of the compensation inductance in practice.展开更多
为分析谐波对电网换相型换流器高压直流输电系统(line commutated converter based high voltage direct current,LCC-HVDC)稳定性的影响,亟需建立一个考虑谐波耦合效应的LCC-HVDC精确模型。基于谐波状态空间(harmonic state space,HSS...为分析谐波对电网换相型换流器高压直流输电系统(line commutated converter based high voltage direct current,LCC-HVDC)稳定性的影响,亟需建立一个考虑谐波耦合效应的LCC-HVDC精确模型。基于谐波状态空间(harmonic state space,HSS)理论,考虑频率耦合效应和控制系统建立了12脉动LCC的阻抗模型,所建交直流谐波阻抗模型能在更宽的频带与扫频结果吻合。最后通过PSCAD电磁暂态仿真结果与HSS阻抗模型计算结果对比,验证了所提出的LCC-HSS阻抗模型的正确性。LCC-HSS阻抗建模方法提高了对LCC换流站进行数学建模的精确性,且可以适应多种模式下LCC换流站阻抗建模,为LCC系统稳定性分析及参数优化提供了较为精确的模型。展开更多
基于模块化多电平换流器的背靠背系统(back-to-back system based on modular multilevel converter,MMC-BTB)中换流器间控制交互密切,导致振荡事故频发。现有研究中忽略谐波传递的单端模型无法准确刻画MMC-BTB阻抗特性,也较少从振荡抑...基于模块化多电平换流器的背靠背系统(back-to-back system based on modular multilevel converter,MMC-BTB)中换流器间控制交互密切,导致振荡事故频发。现有研究中忽略谐波传递的单端模型无法准确刻画MMC-BTB阻抗特性,也较少从振荡抑制层面考虑两换流器间的协同配合。为此,该文考虑MMC-BTB中换流器间谐波传递与衰减机理,依据多种环流控制方式的阻抗等价性提出一种基于环流协调控制的振荡抑制策略。首先,基于等效电路定性分析谐波的流通路径,并定量推导MMC-BTB的双端模型;然后,沿谐波路径对两侧环流控制的交互机理开展分析,证明其对改善MMC-BTB阻抗特性的关键作用,并提出环流控制的协调配合与参数优化策略;最终,通过Matlab/Simulink仿真验证理论分析与所提策略的正确性。展开更多
基金supported in part by the National Natural Science Foundation of China(No.U2166602)in part by the Major Special Project of Hunan Province(No.2020GK1010)in part by the Innovation Young Talents Program of Changsha Science and Technology Bureau(No.kq2107005).
文摘Line commutated converter based high-voltage direct-current(LCC-HVDC)transmissions are prone to harmonic oscillation under weak grids.Impedance modeling is an effective method for assessing interaction stability.Firstly,this paper proposes an improved calculation method for the DC voltage and AC currents of commutation stations to address the complex linearization of the commutation process and constructs an overall harmonic state-space(HSS)model of an LCC-HVDC.Based on the HSS model,the closed-loop AC impedances on the LCC-HVDC sending and receiving ends are then derived and verified.The impedance characteristics of the LCC-HVDC are then analyzed to provide a physical explanation for the harmonic oscillation of the system.The effects of the grid strength and control parameters on system stability are also analyzed.To improve the impedance characteristics and operating stability of the LCC-HVDC system,a virtual impedance based stability enhancement control is proposed,and a parameter design method is considered to ensure satisfactory phase margins at both the sending and receiving ends.Finally,simulation results are presented to verify the validity of the impedance model and virtual impedance based stability enhancement control.
基金supported by National Natural Science Foundation of China(No.52177104).
文摘This study presents a harmonic transfer function(HTF)based single-input single-output(SISO)impedance modeling method.The method converts an HTF from phase domain to sequence domain and then transforms it into an SISO impedance while preserving the frequency coupling information of different sequences and different harmonics.Applications of this method to a line-commutated converter based high-voltage direct current(LCC-HVDC)system are presented.The results demonstrate the accuracy of the derived SISO impedance,and a truncation-order selection is suggested.The case study shows that the proposed method facilitates simpler impedance measurements and associated stability analysis.
基金supported by the National Natural Science Foundation of China(No.51777035).
文摘The equivalent impedance parameters of loads have been widely used to identify and locate the harmonic sources.However,the existing calculation methods suffer from outliers caused by the zero-crossing of the denominator.These outliers can result in inaccuracy and unreliability of harmonic source location.To address this issue,this paper proposes an innovative method of equivalent impedance parameter calculation of three-phase symmetrical loads that avoid outliers.The correctness and effectiveness of the proposed method are verified by simulations on Simulink using actual monitoring data.The results show that the proposed method is not only simple and easy to implement but also highly accurate.
基金supported by the Science and Technology Project of State Grid Corporation of China(No.5400-202219417A-2-0-ZN)。
文摘The effects of nonlinear loads on voltage quality represent an emerging concern for islanded microgrids.Existing research works have mainly focused on harmonic power sharing among multiple inverters,which ignores the diversity of different inverters to mitigate harmonics from nonlinear loads.As a result,the voltage quality of microgrids cannot be effectively improved.To address this issue,this study proposes an adaptive harmonic virtual impedance(HVI)control for improving voltage quality of microgrids.Based on the premise that no inverter is overloaded,the main objective of the proposed control is to maximize harmonic power absorption by shaping the lowest output impedances of inverters.To achieve this,the proposed control is utilized to adjust the HVI of each inverter based on its operation conditions.In addition,the evaluation based on Monte Carlo harmonic power flow is designed to assess the performance of the proposed control in practice.Finally,comparative studies and control-in-the-loop experiments are conducted.
基金The National Natural Science Foundation of China(No.60675045)the National High Technology Research and Development Program of China (863Program) (No.2006AA04Z255)
文摘In order to investigate the joint torque-based Cartesian impedance control strategies and the influence of compensations for friction, an experimental study on the identification of friction parameters, friction compensation and the Cartesian impedance control are developed for the harmonic drive robot, by using the sensors available in the joint itself. Different from the conventional Cartesian impedance control schemes which are mostly based on the robot end force/torque information, five joint torque-based Cartesian impedance control schemes are considered, including the force-based schemes in Cartesian/joint space, the position-based schemes in Cartesian/joint space and the stiffness control. Four of them are verified by corresponding experiments with/without friction compensations. By comparison, it is found that the force-based impedance control strategy is more suitable than the position-based one for the robot based on joint torque feedback and the friction has even a positive effect on Cartesian impedance control stability.
文摘Horizontal impedance functions of inclined single piles are measured experimentally for model soil-pile systems with both the effects of local soil nonlinearity and resonant characteristics.Two practical pile inclinations of 5掳 and 10掳 in addition to a vertical pile embedded in cohesionless soil and subjected to lateral harmonic pile head loadings for a wide range of frequencies are considered.Results obtained with low-to-high amplitude of lateral loadings on model soil-pile systems encased in a laminar shear box show that the local nonlinearities have a profound impact on the horizontal impedance functions of piles.Horizontal impedance functions of inclined piles are found to be smaller than the vertical pile and the values decrease as the angle of pile inclination increases.Distinct values of horizontal impedance functions are obtained for the 'positive' and 'negative' cycles of harmonic loadings,leading to asymmetric force-displacement relationships for the inclined piles.Validation of these experimental results is carried out through three-dimensional nonlinear finite element analyses,and the results from the numerical models are in good agreement with the experimental data.Sensitivity analyses conducted on the numerical models suggest that the consideration of local nonlinearity at the vicinity of the soil-pile interface influence the response of the soil-pile systems.
文摘A sinusoidal voltage wave generator is proposed based on the use of micro-processor digital signals with programmable duty-cycles, with application to real-time Electrical Cell-substrate Impedance Spectroscopy (ECIS) assays in cell cultures. The working principle relies on the time convolution of the programmed microcontroller (μC) digital signals. The expected frequency is easily tuned on the bio-impedance spectroscopy range [100 Hz, 1 MHz] thanks to the μC clock frequency selection. This system has been simulated and tested on the 8 bits μC Arduino<sup>TM </sup>Uno with ATmega328 version. Results obtained prove that only three digital signals are required to fit the general specification in ECIS experiments, below 1% THD accuracy, and show the appropriateness of the system for the real-time monitoring of this type of biological experiments.
基金This research was supported by the National Research Foundation,Prime Minister’s Office,Singapore under the Energy Programme and administrated by the Energy Market Authority(EP Award No.NRF2015EWT-EIRP002-007)。
文摘The increasing use of power electronic devices can deteriorate the power quality by introducing voltage and current harmonics.In islanded microgrids,the presence of nonlinear loads can distort the point of common coupling(PCC)voltage,while the dead-time effect can also bring additional circulating current harmonics among parallel inverters.To simultaneously attenuate the PCC voltage harmonics and suppress the dead-time induced circulating current harmonics,this paper proposes a coordinated control strategy for harmonic mitigation of parallel inverters.The proposed control strategy allows inverter impedances to be properly reshaped at selective harmonic frequencies.As a consequence,the PCC voltage harmonics are filtered by the inverter operating in the harmonic compensation mode(HCM),whereas the dead-time induced circulating current harmonics are suppressed by the inverter operating in the harmonic rejection mode(HRM).Experimental results from an islanded microgrid prototype with two parallel inverters are provided to validate the effectiveness of the proposed control strategy.
文摘The very high (up to 820% of the magnetoimpedance ratio) and sensitive nonlinear giant magnetoimpedance effect has been studied in the FeCo1Ni magnetic tubes electroplated onto Cu(3%)Be nonmagnetic wirefor frequencies from 1-10MHz. Special annealing was carried out in order to induce the magnetic anisotropy. The high harmonic generation was observed and the harmonics show larger variations with the external magnetic field than the fundamental frequency. The super high sensitivity of the harmonics is promising as regards the increase of the sensitivity of magnetoimpedance sensors.
基金supported by the National Basic Research Program of China(973 Program)under Grant No.2013CB228202the National Natural Science Foundation of China under Grant No.51361130153
文摘This paper described the impact of the electrical vehicle(EV) charging on the grid harmonic. In view of the randomness of the EV charging process, the harmonic admittance matrix method and superposition method were used to build the single and multiple EVs charging simulation model. By using Matlab as a simulation tool, we analyzed harmonic currents of single and multiple EVs chargers. The results show that the harmonic ratio is beyond the scope of the national harmonic standard. Finally a parallel hybrid active filter(PHAPF) was introduced for governance of harmonic.The experimental results show that net side harmonic currents are significantly reduced by using the PHAPF and meet the national standard GB/Z17625.6-2003 regulations limit.
文摘The unbalanced impedance of the asymmetric 3-phase wind power permanent magnet synchronous generator(PMSG)compensated by external circuits in series with the 3-phase windings is investigated in this paper.The asymmetric impedance includes the unbalanced resistances,unbalanced self-inductances,and unbalanced mutual inductances.From the perspective of the second harmonic inductances in dq-frame and from the perspective of the second harmonic power,it is theoretically demonstrated that the original asymmetric 3-phase system with asymmetric impedance can be modified to a balanced system by external circuits consisting of resistances and inductances.Therefore,the second harmonic power and DC bus voltage due to the asymmetries can be suppressed naturally without any software modifications.The feasibility of this compensation method is validated by elaborate experiments at different speeds and under different load condition,although the effectiveness might be slightly affected by the non-linearity of the compensation inductance in practice.
文摘为分析谐波对电网换相型换流器高压直流输电系统(line commutated converter based high voltage direct current,LCC-HVDC)稳定性的影响,亟需建立一个考虑谐波耦合效应的LCC-HVDC精确模型。基于谐波状态空间(harmonic state space,HSS)理论,考虑频率耦合效应和控制系统建立了12脉动LCC的阻抗模型,所建交直流谐波阻抗模型能在更宽的频带与扫频结果吻合。最后通过PSCAD电磁暂态仿真结果与HSS阻抗模型计算结果对比,验证了所提出的LCC-HSS阻抗模型的正确性。LCC-HSS阻抗建模方法提高了对LCC换流站进行数学建模的精确性,且可以适应多种模式下LCC换流站阻抗建模,为LCC系统稳定性分析及参数优化提供了较为精确的模型。
文摘基于模块化多电平换流器的背靠背系统(back-to-back system based on modular multilevel converter,MMC-BTB)中换流器间控制交互密切,导致振荡事故频发。现有研究中忽略谐波传递的单端模型无法准确刻画MMC-BTB阻抗特性,也较少从振荡抑制层面考虑两换流器间的协同配合。为此,该文考虑MMC-BTB中换流器间谐波传递与衰减机理,依据多种环流控制方式的阻抗等价性提出一种基于环流协调控制的振荡抑制策略。首先,基于等效电路定性分析谐波的流通路径,并定量推导MMC-BTB的双端模型;然后,沿谐波路径对两侧环流控制的交互机理开展分析,证明其对改善MMC-BTB阻抗特性的关键作用,并提出环流控制的协调配合与参数优化策略;最终,通过Matlab/Simulink仿真验证理论分析与所提策略的正确性。