A nested-model system is constructed by embedding the regional climate model RegCM3 into a general circulation model for monthly-scale regional climate forecast over East China. The systematic errors are formulated fo...A nested-model system is constructed by embedding the regional climate model RegCM3 into a general circulation model for monthly-scale regional climate forecast over East China. The systematic errors are formulated for the region on the basis of 10-yr (1991-2000) results of the nested-model system, and of the datasets of the Climate Prediction Center (CPC) Merged Analysis of Precipitation (CMAP) and the temperature analysis of the National Meteorological Center (NMC), U.S.A., which are then used for correcting the original forecast by the system for the period 2001-2005. After the assessment of the original and corrected forecasts for monthly precipitation and surface air temperature, it is found that the corrected forecast is apparently better than the original, suggesting that the approach can be applied for improving monthly-scale regional climate dynamical forecast.展开更多
This paper is to examine the impact of satellite data on the systematic error of operational B-model in China.Em- phasis is put on the study of the impact of satellite sounding data on forecasts of the sea level press...This paper is to examine the impact of satellite data on the systematic error of operational B-model in China.Em- phasis is put on the study of the impact of satellite sounding data on forecasts of the sea level pressure field and 500 hPa height.The major findings are as follows. (1)The B-model usually underforecasts the strength of features in the sea level pressure(SLP)field,i.e.pressures are too low near high pressure systems and too high near low pressure systems. (2)The nature of the systematic errors found in the 500 hPa height forecasts is not as clear cut as that of the SLP forecasts,but most often the same type of pattern is seen,i.e.,the heights in troughs are not low enough and those in ridges are not high enough. (3)The use of satellite data in the B-model analysis/forecast system is found to have an impact upon the model's forecast of SLP and 500 hPa height.Systematic errors in the vicinity of surface lows/500 hPa troughs over the oceans are usually found to be significantly reduced.A less conclusive mix of positive and negative impacts was found for all other types of features.展开更多
The distribution of monthly mean error of NMC model forecasts and its seasonal variation are investi- gated.The ratio of monthly mean error to standard deviation is used here to find out that the region where a correc...The distribution of monthly mean error of NMC model forecasts and its seasonal variation are investi- gated.The ratio of monthly mean error to standard deviation is used here to find out that the region where a correction of systematic error is needed and appropriate is mainly in low latitudes.The improvement,after the model's vertical resolution and some physical parameters were changed from April 1985,is investigated,and the NMC operational model forecasts have also compared with those of ECMWF.展开更多
基金National Natural Science Foundation of China (40875067, 40675040)Knowledge Innovation Program of the Chinese Academy of Sciences (IAP09306)National Basic Research Program of China. (2006CB400505)
文摘A nested-model system is constructed by embedding the regional climate model RegCM3 into a general circulation model for monthly-scale regional climate forecast over East China. The systematic errors are formulated for the region on the basis of 10-yr (1991-2000) results of the nested-model system, and of the datasets of the Climate Prediction Center (CPC) Merged Analysis of Precipitation (CMAP) and the temperature analysis of the National Meteorological Center (NMC), U.S.A., which are then used for correcting the original forecast by the system for the period 2001-2005. After the assessment of the original and corrected forecasts for monthly precipitation and surface air temperature, it is found that the corrected forecast is apparently better than the original, suggesting that the approach can be applied for improving monthly-scale regional climate dynamical forecast.
文摘This paper is to examine the impact of satellite data on the systematic error of operational B-model in China.Em- phasis is put on the study of the impact of satellite sounding data on forecasts of the sea level pressure field and 500 hPa height.The major findings are as follows. (1)The B-model usually underforecasts the strength of features in the sea level pressure(SLP)field,i.e.pressures are too low near high pressure systems and too high near low pressure systems. (2)The nature of the systematic errors found in the 500 hPa height forecasts is not as clear cut as that of the SLP forecasts,but most often the same type of pattern is seen,i.e.,the heights in troughs are not low enough and those in ridges are not high enough. (3)The use of satellite data in the B-model analysis/forecast system is found to have an impact upon the model's forecast of SLP and 500 hPa height.Systematic errors in the vicinity of surface lows/500 hPa troughs over the oceans are usually found to be significantly reduced.A less conclusive mix of positive and negative impacts was found for all other types of features.
文摘The distribution of monthly mean error of NMC model forecasts and its seasonal variation are investi- gated.The ratio of monthly mean error to standard deviation is used here to find out that the region where a correction of systematic error is needed and appropriate is mainly in low latitudes.The improvement,after the model's vertical resolution and some physical parameters were changed from April 1985,is investigated,and the NMC operational model forecasts have also compared with those of ECMWF.