The methods of Earth rotation parameter (ERP) estimation based on IGS SINEX file of GPS solution are discussed in detail. There are two different ways to estimate ERP: one is the parameter transformation method, and t...The methods of Earth rotation parameter (ERP) estimation based on IGS SINEX file of GPS solution are discussed in detail. There are two different ways to estimate ERP: one is the parameter transformation method, and the other is direct adjustment method with restrictive conditions. By comparing the estimated results with independent copyright program to IERS results, the residual systemic error can be found in estimated ERP with GPS observations.展开更多
Abstract The cross-coupling corrections for the LaCoste & Romberg airborne gravimeter are computed as a linear combination of 5 so-called cross-coupling monitors. The weight factors (coefficients) determined from m...Abstract The cross-coupling corrections for the LaCoste & Romberg airborne gravimeter are computed as a linear combination of 5 so-called cross-coupling monitors. The weight factors (coefficients) determined from marine gravity data by the factory are obviously not optimal for airborne application. These coefficients are recalibrated by minimizing the difference between airborne data and upward continued surface data (external calibration) and by minimizing the errors at line crossings (internal calibration) respectively. An integrating method to recalibrate the above-mentioned coefficients and the beam scale factor simultaneously is also presented. Experimental results show that the systemic errors in the airborne gravity anomalies can be greatly reduced by using any of the recalibrated coefficients. For example, the systemic error is reduced from 4.8 mGal to 1.8 mGal in Datong test.展开更多
The problem of adapting backward error recovery to parallel real time systems is discussed in this paper. Because of error propagation among different cooperating processes, an error occurring in one process may influ...The problem of adapting backward error recovery to parallel real time systems is discussed in this paper. Because of error propagation among different cooperating processes, an error occurring in one process may influence some important outputs in other processes. Therefore, a local output has to be delayed until its validity is confirmed globally. Since backward error recovery adopts redundancy of computing time instead of processing equipment, the variation of the actual execution time of a cooperating process may be very large if it works in an unreliable environment. These problems are the primary obstacles to be removed. Previous studies focus their attentions on how to eliminate domino-effect dynamically. But backward error recovery cannot be applied directly in parallel real time systems even under the condition that no domino-effect exists. How to reduce output delays efficiently if no domino-effect remains? How to estimate this delay time? How to calculate the actual execution time of every process and how to schedule these processes under an unstable condition? These problems were omitted in literature unfortunately. The interest of this paper is to provide satisfactory solutions to these problems to make it possible to adopt backward error recovery efficiently in parallel real time systems.展开更多
Applying laser-speckle techniques in material sciences as well as in methods to characterize surface con- ditions of specimen has become the method of choice, especially if a non-contacting principle is sought. This i...Applying laser-speckle techniques in material sciences as well as in methods to characterize surface con- ditions of specimen has become the method of choice, especially if a non-contacting principle is sought. This is almost always the case for specimen that are small in at least one dimension as for example in the materiM testing of foils, fibres, or micromaterials and certainly also if elevated test-temperatures are preventing standard gauges. This letter discusses in some detail sources of error that are quite often over- looked or not even considered as significant at all, but still carry the potential to introduce uncertainties well above the system design specifications.展开更多
基金Project supported by the National 973 Program(No.2006CB701301) and the National Natural Science Foundation of China (No.40574005) .
文摘The methods of Earth rotation parameter (ERP) estimation based on IGS SINEX file of GPS solution are discussed in detail. There are two different ways to estimate ERP: one is the parameter transformation method, and the other is direct adjustment method with restrictive conditions. By comparing the estimated results with independent copyright program to IERS results, the residual systemic error can be found in estimated ERP with GPS observations.
文摘Abstract The cross-coupling corrections for the LaCoste & Romberg airborne gravimeter are computed as a linear combination of 5 so-called cross-coupling monitors. The weight factors (coefficients) determined from marine gravity data by the factory are obviously not optimal for airborne application. These coefficients are recalibrated by minimizing the difference between airborne data and upward continued surface data (external calibration) and by minimizing the errors at line crossings (internal calibration) respectively. An integrating method to recalibrate the above-mentioned coefficients and the beam scale factor simultaneously is also presented. Experimental results show that the systemic errors in the airborne gravity anomalies can be greatly reduced by using any of the recalibrated coefficients. For example, the systemic error is reduced from 4.8 mGal to 1.8 mGal in Datong test.
文摘The problem of adapting backward error recovery to parallel real time systems is discussed in this paper. Because of error propagation among different cooperating processes, an error occurring in one process may influence some important outputs in other processes. Therefore, a local output has to be delayed until its validity is confirmed globally. Since backward error recovery adopts redundancy of computing time instead of processing equipment, the variation of the actual execution time of a cooperating process may be very large if it works in an unreliable environment. These problems are the primary obstacles to be removed. Previous studies focus their attentions on how to eliminate domino-effect dynamically. But backward error recovery cannot be applied directly in parallel real time systems even under the condition that no domino-effect exists. How to reduce output delays efficiently if no domino-effect remains? How to estimate this delay time? How to calculate the actual execution time of every process and how to schedule these processes under an unstable condition? These problems were omitted in literature unfortunately. The interest of this paper is to provide satisfactory solutions to these problems to make it possible to adopt backward error recovery efficiently in parallel real time systems.
基金the partial financial support for the work presented in this letter by the Austrian Research Promotion Agencythe Austrian COMET Program supporting the Austrian Center of Competence in Mechatronics (ACCM)
文摘Applying laser-speckle techniques in material sciences as well as in methods to characterize surface con- ditions of specimen has become the method of choice, especially if a non-contacting principle is sought. This is almost always the case for specimen that are small in at least one dimension as for example in the materiM testing of foils, fibres, or micromaterials and certainly also if elevated test-temperatures are preventing standard gauges. This letter discusses in some detail sources of error that are quite often over- looked or not even considered as significant at all, but still carry the potential to introduce uncertainties well above the system design specifications.