Phytosulfokine- α (PSK- α ), a biologically active peptide acting as a growth factor, plays a key role in cellular differentiation and proliferation. To test if PSK- α has some influence on agrobacterium-mediated...Phytosulfokine- α (PSK- α ), a biologically active peptide acting as a growth factor, plays a key role in cellular differentiation and proliferation. To test if PSK- α has some influence on agrobacterium-mediated transformation in rice, PSK-α at a series of concentrations was added into co-culture medium respectively. The results showed that PSK- α indeed affected the recovery of resistant calli and the transformation frequency of rice varieties Taipei 309 and Lijiangxintuanheigu, PSK- α at the concentration of 10 nmol/L could increase induction of resistant callus and efficiency of transformation, with a 11% and 4.9% top increase, respectively than the control. However, PSK- αat 200 nmol/L could inhibit the induction of the resistant calli. Further more, the effect of PSK-α on agrobacterium-mediated transformation is related with the concentration of 2, 4-D in selection medium. Higher induction rate of resistant calli was obtained from tissues treated with PSK- α plus 2 mg/L 2, 4-D.展开更多
Wound-inducible proteinase inhibitors (PIs) in tomato plants provide a useful model system to elucidate the signal transduction pathways that regulate systemic defense response. Among the proposed intercellular sign...Wound-inducible proteinase inhibitors (PIs) in tomato plants provide a useful model system to elucidate the signal transduction pathways that regulate systemic defense response. Among the proposed intercellular signals for wound-induced PIs expression are the peptide systemin and the oxylipin-derived phytohormone jasmonic acid (JA). An increasing body of evidence indicates that systemin and JA work in the same signaling pathway to activate the ex- pression of PIs and other defense-related genes. However, relatively less is known about how these signals interact to promote cell-to-cell communication over long distances. Genetic analysis of the systemin/JA signaling pathway in tomato plants provides a unique opportunity to study, in a single experimental system, the mechanism by which peptide and oxylipin signals interact to coordinate systemic expression of defense-related genes. Previously, it has been proposed that systemin is the long-distance mobile signal for defense gene expression. Recently, grafting experiments with tomato mutants defective in JA biosynthesis and signaling provide new evidence that JA, rather than systemin, functions as the systemic wound signal, and that the biosynthesis of JA is regulated by the peptide systemin. Further understanding of the systemin/JA signaling pathway promises to provide new insights into the basic mechanisms governing plant defense to biotic stress.展开更多
文摘Phytosulfokine- α (PSK- α ), a biologically active peptide acting as a growth factor, plays a key role in cellular differentiation and proliferation. To test if PSK- α has some influence on agrobacterium-mediated transformation in rice, PSK-α at a series of concentrations was added into co-culture medium respectively. The results showed that PSK- α indeed affected the recovery of resistant calli and the transformation frequency of rice varieties Taipei 309 and Lijiangxintuanheigu, PSK- α at the concentration of 10 nmol/L could increase induction of resistant callus and efficiency of transformation, with a 11% and 4.9% top increase, respectively than the control. However, PSK- αat 200 nmol/L could inhibit the induction of the resistant calli. Further more, the effect of PSK-α on agrobacterium-mediated transformation is related with the concentration of 2, 4-D in selection medium. Higher induction rate of resistant calli was obtained from tissues treated with PSK- α plus 2 mg/L 2, 4-D.
文摘Wound-inducible proteinase inhibitors (PIs) in tomato plants provide a useful model system to elucidate the signal transduction pathways that regulate systemic defense response. Among the proposed intercellular signals for wound-induced PIs expression are the peptide systemin and the oxylipin-derived phytohormone jasmonic acid (JA). An increasing body of evidence indicates that systemin and JA work in the same signaling pathway to activate the ex- pression of PIs and other defense-related genes. However, relatively less is known about how these signals interact to promote cell-to-cell communication over long distances. Genetic analysis of the systemin/JA signaling pathway in tomato plants provides a unique opportunity to study, in a single experimental system, the mechanism by which peptide and oxylipin signals interact to coordinate systemic expression of defense-related genes. Previously, it has been proposed that systemin is the long-distance mobile signal for defense gene expression. Recently, grafting experiments with tomato mutants defective in JA biosynthesis and signaling provide new evidence that JA, rather than systemin, functions as the systemic wound signal, and that the biosynthesis of JA is regulated by the peptide systemin. Further understanding of the systemin/JA signaling pathway promises to provide new insights into the basic mechanisms governing plant defense to biotic stress.