This paper is concentrated on a nonlinear Galerkin method with sm small- scale components for Kuramoto-Sivashmsky equation, in which convergence results and the analysis of error estimates are given, The conclusion sh...This paper is concentrated on a nonlinear Galerkin method with sm small- scale components for Kuramoto-Sivashmsky equation, in which convergence results and the analysis of error estimates are given, The conclusion shows that this choce of modes is efficient .for The method modifred.展开更多
A new concept of an equi-attractor is introduced, and defined by the minimal compact set that attracts bounded sets uniformly in the past, for a non-autonomous dynam- ical system. It is shown that the compact equi-att...A new concept of an equi-attractor is introduced, and defined by the minimal compact set that attracts bounded sets uniformly in the past, for a non-autonomous dynam- ical system. It is shown that the compact equi-attraction implies the backward compactness of a pullback attractor. Also, an eventually equi-continuous and strongly bounded process has an equi-attractor if and only if it is strongly point dissipative and strongly asymptotically compact. Those results primely strengthen the known existence result of a backward bounded pullback attractor in the literature. Finally, the theoretical criteria are applied to prove the existence of both equi-attractor and backward compact attractor for a Ginzburg-Landau equation with some varying coefficients and a backward tempered external force.展开更多
文摘This paper is concentrated on a nonlinear Galerkin method with sm small- scale components for Kuramoto-Sivashmsky equation, in which convergence results and the analysis of error estimates are given, The conclusion shows that this choce of modes is efficient .for The method modifred.
基金supported by the National Natural Science Foundation of China(11571283)supported by Natural Science Foundation of Guizhou Province
文摘A new concept of an equi-attractor is introduced, and defined by the minimal compact set that attracts bounded sets uniformly in the past, for a non-autonomous dynam- ical system. It is shown that the compact equi-attraction implies the backward compactness of a pullback attractor. Also, an eventually equi-continuous and strongly bounded process has an equi-attractor if and only if it is strongly point dissipative and strongly asymptotically compact. Those results primely strengthen the known existence result of a backward bounded pullback attractor in the literature. Finally, the theoretical criteria are applied to prove the existence of both equi-attractor and backward compact attractor for a Ginzburg-Landau equation with some varying coefficients and a backward tempered external force.