The numerical approach for finding the solution of fractional order systems of boundary value problems (BPVs) is derived in this paper. The implementation of the weighted residuals such as Galerkin, Least Square, and ...The numerical approach for finding the solution of fractional order systems of boundary value problems (BPVs) is derived in this paper. The implementation of the weighted residuals such as Galerkin, Least Square, and Collocation methods are included for solving fractional order differential equations, which is broadened to acquire the approximate solutions of fractional order systems with differentiable polynomials, namely Legendre polynomials, as basis functions. The algorithm of the residual formulations of matrix form can be coded efficiently. The interpretation of Caputo fractional derivatives is employed here. We have demonstrated these methods numerically through a few examples of linear and nonlinear BVPs. The results in absolute errors show that the present method efficiently finds the numerical solutions of fractional order systems of differential equations.展开更多
To solve the first-order differential equation derived from the problem of a free-falling object and the problem arising from Newton’s law of cooling, the study compares the numerical solutions obtained from Picard’...To solve the first-order differential equation derived from the problem of a free-falling object and the problem arising from Newton’s law of cooling, the study compares the numerical solutions obtained from Picard’s and Taylor’s series methods. We have carried out a descriptive analysis using the MATLAB software. Picard’s and Taylor’s techniques for deriving numerical solutions are both strong mathematical instruments that behave similarly. All first-order differential equations in standard form that have a constant function on the right-hand side share this similarity. As a result, we can conclude that Taylor’s approach is simpler to use, more effective, and more accurate. We will contrast Rung Kutta and Taylor’s methods in more detail in the following section.展开更多
Many important problems in science and engineering require solving the so-called parametric partial differential equations(PDEs),i.e.,PDEs with different physical parameters,boundary conditions,shapes of computational...Many important problems in science and engineering require solving the so-called parametric partial differential equations(PDEs),i.e.,PDEs with different physical parameters,boundary conditions,shapes of computational domains,etc.Typical reduced order modeling techniques accelerate the solution of the parametric PDEs by projecting them onto a linear trial manifold constructed in the ofline stage.These methods often need a predefined mesh as well as a series of precomputed solution snapshots,and may struggle to balance between the efficiency and accuracy due to the limitation of the linear ansatz.Utilizing the nonlinear representation of neural networks(NNs),we propose the Meta-Auto-Decoder(MAD)to construct a nonlinear trial manifold,whose best possible performance is measured theoretically by the decoder width.Based on the meta-learning concept,the trial manifold can be learned in a mesh-free and unsupervised way during the pre-training stage.Fast adaptation to new(possibly heterogeneous)PDE parameters is enabled by searching on this trial manifold,and optionally fine-tuning the trial manifold at the same time.Extensive numerical experiments show that the MAD method exhibits a faster convergence speed without losing the accuracy than other deep learning-based methods.展开更多
In this study, the Bernstein collocation method has been expanded to Stancu collocation method for numerical solution of the charged particle motion for certain configurations of oscillating magnetic fields modelled b...In this study, the Bernstein collocation method has been expanded to Stancu collocation method for numerical solution of the charged particle motion for certain configurations of oscillating magnetic fields modelled by a class of linear integro-differential equations. As the method has been improved, the Stancu polynomials that are generalization of the Bernstein polynomials have been used. The method has been tested on a physical problem how the method can be applied. Moreover, numerical results of the method have been compared with the numerical results of the other methods to indicate the efficiency of the method.展开更多
In this work, we consider the second order nonlinear integro-differential Equation (IDEs) of the Volterra-Fredholm type. One of the popular methods for solving Volterra or Fredholm type IDEs is the method of quadratur...In this work, we consider the second order nonlinear integro-differential Equation (IDEs) of the Volterra-Fredholm type. One of the popular methods for solving Volterra or Fredholm type IDEs is the method of quadrature while the problem of consideration is a linear problem. If IDEs are nonlinear or integral kernel is complicated, then quadrature rule is not most suitable;therefore, other types of methods are needed to develop. One of the suitable and effective method is homotopy analysis method (HAM) developed by Liao in 1992. To apply HAM, we firstly reduced the IDEs into nonlinear integral Equation (IEs) of Volterra-Fredholm type;then the standard HAM was applied. Gauss-Legendre quadrature formula was used for kernel integrations. Obtained system of algebraic equations was solved numerically. Moreover, numerical examples demonstrate the high accuracy of the proposed method. Comparisons with other methods are also provided. The results show that the proposed method is simple, effective and dominated other methods.展开更多
This paper is concerned with the order of the solutions of systems of high-order complex algebraic differential equations.By means of Zalcman Lemma,the systems of equations of[1]is extended to more general form.
This paper studies conformal invariance and conserved quantity of third-order Lagrange equations for non- conserved mechanical systems. Third-order Lagrange equations, the definition and a determining equation of conf...This paper studies conformal invariance and conserved quantity of third-order Lagrange equations for non- conserved mechanical systems. Third-order Lagrange equations, the definition and a determining equation of conformal invariance of the system are presented. The conformal factor expression is deduced from conformal invariance and Lie symmetry. The necessary and sufficient condition that conformal invaxiance of the system would have Lie symmetry under single-parameter infinitesimal transformations is obtained. The corresponding conserved quantity of conformal invariance is derived with the aid of a structure equation. Lastly, an example is given to illustrate the application of the results.展开更多
we consider the third-order neutral functional differential equations with deviating arguments. A new theorem is presented that improves a number of results reported in the literature. Examples are included to illustr...we consider the third-order neutral functional differential equations with deviating arguments. A new theorem is presented that improves a number of results reported in the literature. Examples are included to illustrate new results.展开更多
Oscillation criteria are established for third-order neutral delay differential equations with deviating arguments. These criteria extend and generalize those results in the literature. Moreover, some illustrating exa...Oscillation criteria are established for third-order neutral delay differential equations with deviating arguments. These criteria extend and generalize those results in the literature. Moreover, some illustrating examples are also provided to show the importance of our results.展开更多
In this paper, by defining an appropriate Lyapunov functional, we obtain sufficient conditions for which all solutions of certain real non-autonomous third order nonlinear differential equations are asymptotically sta...In this paper, by defining an appropriate Lyapunov functional, we obtain sufficient conditions for which all solutions of certain real non-autonomous third order nonlinear differential equations are asymptotically stable and bounded. The results obtained improve and extend some known results in the literature.展开更多
To study a class of boundary value problems of parabolic differential equations with deviating arguments, averaging technique, Green’s formula and symbol function sign(·) are used. The multi dimensional problem...To study a class of boundary value problems of parabolic differential equations with deviating arguments, averaging technique, Green’s formula and symbol function sign(·) are used. The multi dimensional problem was reduced to a one dimensional oscillation problem for ordinary differential equations or inequalities. Two oscillatory criteria of solutions for systems of parabolic differential equations with deviating arguments are obtained.展开更多
In this paper we study the higher-order differential variational principle and differential equations of motion for mechanical systems in event space. Based on the higher-order d'Alembert principle of the system, the...In this paper we study the higher-order differential variational principle and differential equations of motion for mechanical systems in event space. Based on the higher-order d'Alembert principle of the system, the higher-order velocity energy and the higher-order acceleration energy of the system in event space are defined, the higher-order d'Alembert- Lagrange principle of the system in event space is established, and the parametric forms of Euler-Lagrange, Nielsen and Appell for this principle are given. Finally, the higher-order differential equations of motion for holonomic systems in event space are obtained.展开更多
Convergence behaviors of solutions arising from certain system of third-order nonlinear differential equations are studied. Such convergence of solutions corresponding to extreme stability of solutions when relates a ...Convergence behaviors of solutions arising from certain system of third-order nonlinear differential equations are studied. Such convergence of solutions corresponding to extreme stability of solutions when relates a pair of solutions of the system considered. Using suitable Lyapunov functionals, we prove that the solutions of the nonlinear differential equation are convergent. Result obtained generalizes and improves some known results in the literature. Example is included to illustrate the result.展开更多
In this paper, a new two-step Newton-type method with third-order convergence for solving systems of nonlinear equations is proposed. We construct the new method based on the integral interpolation of Newton’s method...In this paper, a new two-step Newton-type method with third-order convergence for solving systems of nonlinear equations is proposed. We construct the new method based on the integral interpolation of Newton’s method. Its cubic convergence and error equation are proved theoretically, and demonstrated numerically. Its application to systems of nonlinear equations and boundary-value problems of nonlinear ODEs are shown as well in the numerical examples.展开更多
In this paper,the oscillation criteria for the solutions of the nonlinear differential equations of neutral type of the forms:[x(t)+p(t)x(σ(t))]″+q(t)f(x(τ(t)))g(x′(t))=0and[x(t)+p(t)x(σ(t))]″+q(t)f(x(t),x(τ(t)...In this paper,the oscillation criteria for the solutions of the nonlinear differential equations of neutral type of the forms:[x(t)+p(t)x(σ(t))]″+q(t)f(x(τ(t)))g(x′(t))=0and[x(t)+p(t)x(σ(t))]″+q(t)f(x(t),x(τ(t)))g(x′(t))=0are obtained.展开更多
We investigate the problem of growth order of solutions of a type of systems of non-linear algebraic differential equations, and extend some results of the growth order of solutions of algebraic differential equations...We investigate the problem of growth order of solutions of a type of systems of non-linear algebraic differential equations, and extend some results of the growth order of solutions of algebraic differential equations to systems of algebraic differential equations.展开更多
Using the Nevanlinna theory of the value distribution of meromorphic functions and theory of differential algebra, we investigate the problem of the forms of meromorphic solutions of some specific systems of generaliz...Using the Nevanlinna theory of the value distribution of meromorphic functions and theory of differential algebra, we investigate the problem of the forms of meromorphic solutions of some specific systems of generalized higher order algebraic differential equations with exponential coefficients and obtain some results.展开更多
Suffcient conditions for the existence of at least one solution of two-point boundary value problems for second order nonlinear differential equations [φ(x(t))] + kx(t) + g(t,x(t)) = p(t),t ∈(0,π) x(0) = x(π) = 0 ...Suffcient conditions for the existence of at least one solution of two-point boundary value problems for second order nonlinear differential equations [φ(x(t))] + kx(t) + g(t,x(t)) = p(t),t ∈(0,π) x(0) = x(π) = 0 are established,where [φ(x)] =(|x |p-2x) with p > 1.Our result is new even when [φ(x)] = x in above problem,i.e.p = 2.Examples are presented to illustrate the effciency of the theorem in this paper.展开更多
In this paper, a high accuracy finite volume element method is presented for two-point boundary value problem of second order ordinary differential equation, which differs from the high order generalized difference me...In this paper, a high accuracy finite volume element method is presented for two-point boundary value problem of second order ordinary differential equation, which differs from the high order generalized difference methods. It is proved that the method has optimal order error estimate O(h3) in H1 norm. Finally, two examples show that the method is effective.展开更多
By the use of the Liapunov functional approach, a new result is obtained to ascertain the asymptotic stability of zero solution of a certain fourth-order non-linear differential equation with delay. The established re...By the use of the Liapunov functional approach, a new result is obtained to ascertain the asymptotic stability of zero solution of a certain fourth-order non-linear differential equation with delay. The established result is less restrictive than those reported in the literature.展开更多
文摘The numerical approach for finding the solution of fractional order systems of boundary value problems (BPVs) is derived in this paper. The implementation of the weighted residuals such as Galerkin, Least Square, and Collocation methods are included for solving fractional order differential equations, which is broadened to acquire the approximate solutions of fractional order systems with differentiable polynomials, namely Legendre polynomials, as basis functions. The algorithm of the residual formulations of matrix form can be coded efficiently. The interpretation of Caputo fractional derivatives is employed here. We have demonstrated these methods numerically through a few examples of linear and nonlinear BVPs. The results in absolute errors show that the present method efficiently finds the numerical solutions of fractional order systems of differential equations.
文摘To solve the first-order differential equation derived from the problem of a free-falling object and the problem arising from Newton’s law of cooling, the study compares the numerical solutions obtained from Picard’s and Taylor’s series methods. We have carried out a descriptive analysis using the MATLAB software. Picard’s and Taylor’s techniques for deriving numerical solutions are both strong mathematical instruments that behave similarly. All first-order differential equations in standard form that have a constant function on the right-hand side share this similarity. As a result, we can conclude that Taylor’s approach is simpler to use, more effective, and more accurate. We will contrast Rung Kutta and Taylor’s methods in more detail in the following section.
基金supported by the National Key R&D Program of China under Grant No.2021ZD0110400.
文摘Many important problems in science and engineering require solving the so-called parametric partial differential equations(PDEs),i.e.,PDEs with different physical parameters,boundary conditions,shapes of computational domains,etc.Typical reduced order modeling techniques accelerate the solution of the parametric PDEs by projecting them onto a linear trial manifold constructed in the ofline stage.These methods often need a predefined mesh as well as a series of precomputed solution snapshots,and may struggle to balance between the efficiency and accuracy due to the limitation of the linear ansatz.Utilizing the nonlinear representation of neural networks(NNs),we propose the Meta-Auto-Decoder(MAD)to construct a nonlinear trial manifold,whose best possible performance is measured theoretically by the decoder width.Based on the meta-learning concept,the trial manifold can be learned in a mesh-free and unsupervised way during the pre-training stage.Fast adaptation to new(possibly heterogeneous)PDE parameters is enabled by searching on this trial manifold,and optionally fine-tuning the trial manifold at the same time.Extensive numerical experiments show that the MAD method exhibits a faster convergence speed without losing the accuracy than other deep learning-based methods.
文摘In this study, the Bernstein collocation method has been expanded to Stancu collocation method for numerical solution of the charged particle motion for certain configurations of oscillating magnetic fields modelled by a class of linear integro-differential equations. As the method has been improved, the Stancu polynomials that are generalization of the Bernstein polynomials have been used. The method has been tested on a physical problem how the method can be applied. Moreover, numerical results of the method have been compared with the numerical results of the other methods to indicate the efficiency of the method.
文摘In this work, we consider the second order nonlinear integro-differential Equation (IDEs) of the Volterra-Fredholm type. One of the popular methods for solving Volterra or Fredholm type IDEs is the method of quadrature while the problem of consideration is a linear problem. If IDEs are nonlinear or integral kernel is complicated, then quadrature rule is not most suitable;therefore, other types of methods are needed to develop. One of the suitable and effective method is homotopy analysis method (HAM) developed by Liao in 1992. To apply HAM, we firstly reduced the IDEs into nonlinear integral Equation (IEs) of Volterra-Fredholm type;then the standard HAM was applied. Gauss-Legendre quadrature formula was used for kernel integrations. Obtained system of algebraic equations was solved numerically. Moreover, numerical examples demonstrate the high accuracy of the proposed method. Comparisons with other methods are also provided. The results show that the proposed method is simple, effective and dominated other methods.
基金Supported by the Natural Science Foundation of Guangdong Province(04010474) Supported by the Foundation of the Education Department of Anhui Province for Outstanding Young Teachers in University(2011SQRL172)
文摘This paper is concerned with the order of the solutions of systems of high-order complex algebraic differential equations.By means of Zalcman Lemma,the systems of equations of[1]is extended to more general form.
基金Project supported by the Graduate Students Innovative Foundation of China University of Petroleum (East China) (Grant NoS2009-19)
文摘This paper studies conformal invariance and conserved quantity of third-order Lagrange equations for non- conserved mechanical systems. Third-order Lagrange equations, the definition and a determining equation of conformal invariance of the system are presented. The conformal factor expression is deduced from conformal invariance and Lie symmetry. The necessary and sufficient condition that conformal invaxiance of the system would have Lie symmetry under single-parameter infinitesimal transformations is obtained. The corresponding conserved quantity of conformal invariance is derived with the aid of a structure equation. Lastly, an example is given to illustrate the application of the results.
文摘we consider the third-order neutral functional differential equations with deviating arguments. A new theorem is presented that improves a number of results reported in the literature. Examples are included to illustrate new results.
文摘Oscillation criteria are established for third-order neutral delay differential equations with deviating arguments. These criteria extend and generalize those results in the literature. Moreover, some illustrating examples are also provided to show the importance of our results.
文摘In this paper, by defining an appropriate Lyapunov functional, we obtain sufficient conditions for which all solutions of certain real non-autonomous third order nonlinear differential equations are asymptotically stable and bounded. The results obtained improve and extend some known results in the literature.
文摘To study a class of boundary value problems of parabolic differential equations with deviating arguments, averaging technique, Green’s formula and symbol function sign(·) are used. The multi dimensional problem was reduced to a one dimensional oscillation problem for ordinary differential equations or inequalities. Two oscillatory criteria of solutions for systems of parabolic differential equations with deviating arguments are obtained.
基金Project supported by the Science and Technology Program of Xi’an City,China(Grant No.CXY1352WL34)
文摘In this paper we study the higher-order differential variational principle and differential equations of motion for mechanical systems in event space. Based on the higher-order d'Alembert principle of the system, the higher-order velocity energy and the higher-order acceleration energy of the system in event space are defined, the higher-order d'Alembert- Lagrange principle of the system in event space is established, and the parametric forms of Euler-Lagrange, Nielsen and Appell for this principle are given. Finally, the higher-order differential equations of motion for holonomic systems in event space are obtained.
文摘Convergence behaviors of solutions arising from certain system of third-order nonlinear differential equations are studied. Such convergence of solutions corresponding to extreme stability of solutions when relates a pair of solutions of the system considered. Using suitable Lyapunov functionals, we prove that the solutions of the nonlinear differential equation are convergent. Result obtained generalizes and improves some known results in the literature. Example is included to illustrate the result.
文摘In this paper, a new two-step Newton-type method with third-order convergence for solving systems of nonlinear equations is proposed. We construct the new method based on the integral interpolation of Newton’s method. Its cubic convergence and error equation are proved theoretically, and demonstrated numerically. Its application to systems of nonlinear equations and boundary-value problems of nonlinear ODEs are shown as well in the numerical examples.
文摘In this paper,the oscillation criteria for the solutions of the nonlinear differential equations of neutral type of the forms:[x(t)+p(t)x(σ(t))]″+q(t)f(x(τ(t)))g(x′(t))=0and[x(t)+p(t)x(σ(t))]″+q(t)f(x(t),x(τ(t)))g(x′(t))=0are obtained.
基金supported by the Natural Science Foundationof China (10471065)the Natural Science Foundation of Guangdong Province (N04010474)
文摘We investigate the problem of growth order of solutions of a type of systems of non-linear algebraic differential equations, and extend some results of the growth order of solutions of algebraic differential equations to systems of algebraic differential equations.
基金Project Supported by the Natural Science Foundation of China (10471065)the Natural Science Foundation of Guangdong Province (04010474)
文摘Using the Nevanlinna theory of the value distribution of meromorphic functions and theory of differential algebra, we investigate the problem of the forms of meromorphic solutions of some specific systems of generalized higher order algebraic differential equations with exponential coefficients and obtain some results.
基金Supported by the Natural Science Foundation of Hunan Province(06JJ50008) Supported by the Natural Science Foundation of Guangdong Province(7004569)
文摘Suffcient conditions for the existence of at least one solution of two-point boundary value problems for second order nonlinear differential equations [φ(x(t))] + kx(t) + g(t,x(t)) = p(t),t ∈(0,π) x(0) = x(π) = 0 are established,where [φ(x)] =(|x |p-2x) with p > 1.Our result is new even when [φ(x)] = x in above problem,i.e.p = 2.Examples are presented to illustrate the effciency of the theorem in this paper.
基金heprojectissupportedbyNNSFofChina (No .1 9972 0 39) .
文摘In this paper, a high accuracy finite volume element method is presented for two-point boundary value problem of second order ordinary differential equation, which differs from the high order generalized difference methods. It is proved that the method has optimal order error estimate O(h3) in H1 norm. Finally, two examples show that the method is effective.
文摘By the use of the Liapunov functional approach, a new result is obtained to ascertain the asymptotic stability of zero solution of a certain fourth-order non-linear differential equation with delay. The established result is less restrictive than those reported in the literature.