Composite radar reflectivity data during April-September 2011-2015 are used to investigate and classify storms in south China(18-27°N;105-120°E). The storms appear most frequently in May. They are either lin...Composite radar reflectivity data during April-September 2011-2015 are used to investigate and classify storms in south China(18-27°N;105-120°E). The storms appear most frequently in May. They are either linear;cellular or nonlinear systems, taking up 29.45%, 24.51% and 46.04%, respectively, in terms of morphology. Linear systems are subdivided into six morphologies: trailing stratiform precipitation(TS), bow echoes(BE), leading stratiform precipitation(LS), embedded line(EL), no stratiform precipitation(NS) and parallel stratiform precipitation(PS). The TS and NS modes have the highest frequencies but there are only small samples of LS(0.61%) and PS(0.79%) modes.Severe convective wind(≥17m s-1at surface level) accounts for the highest percentage(35%) of severe convective weather events produced by cellular systems including individual cells(IC) and clusters of cells(CC). Short-duration heavy rainfall(≥50 mm h-1) and severe convective wind are the most common severe weather associated with TS and BE modes. Comparison of environmental physical parameters shows that cellular convection systems tend to occur in the environment with favorable thermal condition, substantial unstable energy and low precipitable water from the surface to300 hPa(PWAT). However, the environmental conditions favoring the initiation of linear systems feature strong vertical wind shear, high PWAT, and intense convective inhibition. The environmental parameters favoring the initiation of nonlinear systems are between those of the other two types of morphology.展开更多
Severe weather reports and composite radar reflectivity data from 2010-14 over North China were used to analyze the distribution of severe convective wind(SCW) events and their organizational modes of radar reflecti...Severe weather reports and composite radar reflectivity data from 2010-14 over North China were used to analyze the distribution of severe convective wind(SCW) events and their organizational modes of radar reflectivity. The six organizational modes for SCW events(and their proportions) were cluster cells(35.4%), squall lines(18.4%), nonlinear-shaped systems(17.8%), broken lines(11.6%), individual cells(1.2%), and bow echoes(0.5%). The peak month for both squall lines and broken lines was June, whereas it was July for the other four modes. The highest numbers of SCW events were over the mountains, which were generally associated with disorganized systems of cluster cells. In contrast, SCW associated with linear systems occurred mainly over the plains, where stations recorded an average of less than one SCW event per year. Regions with a high frequency of SCW associated with nonlinear-shaped systems also experienced many SCW events associated with squall lines. Values of convective available potential energy, precipitable water, 0-3-km shear, and 0-6-km shear, were demonstrably larger over the plains than over the mountains, which had an evident effect on the organizational modes of SCW events. Therefore, topography may be an important factor in the organizational modes for SCW events over North China.展开更多
Based on the disaster reports,NCEP2.5X2.5 reanalysis data and radiosonde data of 11 national stations in Ulanqab region from June to August during 2012-2017,the weather situation classification and warning indicators ...Based on the disaster reports,NCEP2.5X2.5 reanalysis data and radiosonde data of 11 national stations in Ulanqab region from June to August during 2012-2017,the weather situation classification and warning indicators of thunderstorm and gale,hail and short-term heavy rainfall were studied.The results show that the cold vortex weather situation was easy to produce hail,and the falling area of severe convection could be found in the downstream of the cold vortex,the intersection area of jet stream at 200 and 500 hPa,and the wet area side of the 700 hPa main line.The cold trough type weather situation was easy to produce thunderstorm and gale,and the falling area of severe convection appeared on the right side of the upper jet stream axis,the left side of the lower jet stream axis,the wet side of the 700 hPa main line,and the east of the shear line at 700 hPa.The weather situation of the low trough and subtropical high type was dominated by short-term rainstorm,and the falling area of severe convection was on the right side of upper jet stream at 200 hPa,the left side of the low southeast jet stream,and the wet side of the 700 hPa main line.The warning index thresholds of the total index,the temperature change at 850-500 hPa with height,the height of 0 and-20℃layer,lifting condensation height,temperature dew point difference and mixing ratio were highly reliable.展开更多
Severe convective weather can lead to a variety of disasters, but they are still difficult to be pre-warned and forecasted in the meteorological operation. This study generates a model based on the light gradient boos...Severe convective weather can lead to a variety of disasters, but they are still difficult to be pre-warned and forecasted in the meteorological operation. This study generates a model based on the light gradient boosting machine (LightGBM) algorithm using C-band radar echo products and ground observations, to identify and classify three major types of severe convective weather (</span><i><span style="font-family:Verdana;">i.e.</span></i><span style="font-family:Verdana;">, hail, short-term heavy rain (STHR), convective gust (CG)). The model evaluations show the LightGBM model performs well in the training set (2011-2017) and the testing set (2018) with the overall false identification ratio (FIR) of only 4.9% and 7.0%, respectively. Furthermore, the average probability of detection (POD), critical success index (CSI) and false alarm ratio (FAR) for the three types of severe convective weather in two sample sets are over 85%, 65% and lower than 30%, respectively. The LightGBM model and the storm cell identification and tracking (SCIT) product are then used to forecast the severe convective weather 15 - 60 minutes in advance. The average POD, CSI and FAR for the forecasts of the three types of severe convective weather are 57.4%, 54.7% and 38.4%, respectively, which are significantly higher than those of the manual work. Among the three types of severe convective weather, the STHR has the highest POD and CSI and the lowest FAR, while the skill scores for the hail and CG are similar. Therefore, the LightGBM model constructed in this paper is able to identify, classify and forecast the three major types of severe convective weather automatically with relatively high accuracy, and has a broad application prospect in the future automatic meteorological operation.展开更多
In the present study,a hazard model of severe convective weather was constructed on the basis of meteorological observational data obtained in Guangdong Province between 2003 and 2015.In the analysis,quality control w...In the present study,a hazard model of severe convective weather was constructed on the basis of meteorological observational data obtained in Guangdong Province between 2003 and 2015.In the analysis,quality control was first conducted on the severe convective weather data,and the kriging method was then used to interpolate each hazard-formative factor.The weights of which were determined by applying the coefficient of variation method.The results were used to establish the hazard-formative factor model of severe convective weather.The cities showing the greatest hazards for severe convective weather in Guangdong Province include Yangjiang,Dongguan,Foshan,Huizhou,Jiangmen,and Qingyuan.展开更多
Based on conventional meteorological observation data and Doppler radar data,the occurrence and development mechanism of mixed severe convective weather and evolution of convective storm in Guangxi on March 4,2018 wer...Based on conventional meteorological observation data and Doppler radar data,the occurrence and development mechanism of mixed severe convective weather and evolution of convective storm in Guangxi on March 4,2018 were analyzed. The results showed that the dry line was the main trigger mechanism of this severe convective weather. Instable convection stratification of cold advection at middle layer and warm advection at low layer and abundant water vapor from low-level jet provided favorable stratification and water vapor conditions for the occurrence and development of severe convection. Cold trough at middle layer,low pressure and strong vertical wind shear at middle and lower layers may be main factors for the development and maintenance of strong storm system. Squall line developed along ground convergence line,and there was bow echo on reflectivity factor chart. Moving velocity of convective system was quick,and there was gale core and velocity ambiguity on velocity map.展开更多
Two intense quasi-linear mesoscale convective systems(QLMCSs) in northern China were simulated using the WRF(Weather Research and Forecasting) model and the 3D-Var(three-dimensional variational) analysis system ...Two intense quasi-linear mesoscale convective systems(QLMCSs) in northern China were simulated using the WRF(Weather Research and Forecasting) model and the 3D-Var(three-dimensional variational) analysis system of the ARPS(Advanced Regional Prediction System) model.A new method in which the lightning density is calculated using both the precipitation and non-precipitation ice mass was developed to reveal the relationship between the lightning activities and QLMCS structures.Results indicate that,compared with calculating the results using two previous methods,the lightning density calculated using the new method presented in this study is in better accordance with observations.Based on the calculated lightning densities using the new method,it was found that most lightning activity was initiated on the right side and at the front of the QLMCSs,where the surface wind field converged intensely.The CAPE was much stronger ahead of the southeastward progressing QLMCS than to the back it,and their lightning events mainly occurred in regions with a large gradient of CAPE.Comparisons between lightning and non-lightning regions indicated that lightning regions featured more intense ascending motion than non-lightning regions;the vertical ranges of maximum reflectivity between lightning and non-lightning regions were very different;and the ice mixing ratio featured no significant differences between the lightning and non-lightning regions.展开更多
Based on the Tropical Rainfall Measuring Mission(TRMM) precipitation radar observations, wide convection(WC) is defined as contiguous convective echoes over 40 d BZ, accompanied with a near surface rainfall area e...Based on the Tropical Rainfall Measuring Mission(TRMM) precipitation radar observations, wide convection(WC) is defined as contiguous convective echoes over 40 d BZ, accompanied with a near surface rainfall area exceeding 1000 km^2. In Southeast China, the maximal occurrence frequency of WC takes place over the flat land region in the central plain of East China during the summer monsoon period of 1998–2010. When WC occurs in this region, the 500-h Pa atmospheric fields are categorized into three patterns by using an objective classification method, i.e., the deep-trough-control(DTr) pattern, the subtropical-highmaintenance(STH) pattern, and the typhoon-effect(Typh) pattern, which respectively accounts for 20.8%,52.8%, and 26.4% of the total WC occurrences. The DTr pattern starts to emerge the earliest(16–31 May)and occurs the most often in the second half of June; the STH pattern has a significant occurrence peak in the first half of July; the Typh pattern occurs mostly in July and August.Nearly all WC occurrences in this region are associated with thunderstorms, due to large convective available potential energy and abundant moisture. Among the three synoptic patterns, the DTr pattern features the driest and coldest air in the region, leading to the least occurrences of short-duration heavy rainfall. Strong winds occur the most often under the DTr pattern, probably owing to the largest difference in air humidity between the mid and low troposphere. Hail at the surface is rare for all occurrences of WC,which is probably related to the humid environmental air under all weather patterns and the high(〉 5 km)freezing level under the STH pattern.展开更多
Based on the significant weather report,CG lightning,composite radar reflectivity,and ERA5 reanalysis data,we first studied the spatiotemporal distribution characteristics of four types(only severe convective wind(SCW...Based on the significant weather report,CG lightning,composite radar reflectivity,and ERA5 reanalysis data,we first studied the spatiotemporal distribution characteristics of four types(only severe convective wind(SCW);SCW and hail;SCW and short-duration heavy rainfall(SDHR);and SCW,hail,and SDHR)of convective weather events related to SCW during the warm season(May to September)from 2011 to 2018 in North China.Second,severe convective cases producing SCW were selected to statistically analyze the initiation,decay,lifetime,and organizational characteristics of convective systems.Finally,using ERA5 reanalysis data and conventional surface observation data,preconvective soundings were constructed to explore the differences in environmental conditions for initiating convective systems between SCW and non-SCW.The results indicate that mixed-type of SCW and SDHR events occur more frequently over plains,while other types of convective weather occur more frequently over mountains.The frequency peak of SCW occurs in June,while mixed convective weather peaks in July.The initiation time of convective systems is concentrated between 1000 and 1300 BST,with a peak at 1200 BST.Over mountains,the daily peaks of ordinary and significant SCW generally occur at 1700-1800 BST and 1600-1700 BST,respectively,while over plains,the peak of ordinary SCW typically lags behind that of mountains by 1-2 hours.Additionally,SCW systems are mainly initiated over mountains,with most lifetimes lasting 7–13 hours.Nonlinear convective systems produce the most SCW events,followed by trailing-stratiform convective systems.The convective available potential energy(CAPE),downdraft convective available potential energy,and the temperature difference between 850 and 500 hPa can all distinguish between SCW systems and non-SCW systems occurring over plains.Compared to non-SCW convective systems,SCW convective systems over mountains are more likely to occur in environments with less precipitable water,while SCW convective systems over plains are more likely to occur in environments with higher CAPE and stronger deep-layer wind shear.展开更多
This article reviews the advances in severe convection research and operation in China during the past several decades.The favorable synoptic situations for severe convective weather(SCW),the major organization modes ...This article reviews the advances in severe convection research and operation in China during the past several decades.The favorable synoptic situations for severe convective weather(SCW),the major organization modes of severe convective storms(SCSs),the favorable environmental conditions and characteristics of weather radar echoes and satellite images of SCW and SCSs,and the forecasting and nowcasting techniques of SCW,are emphasized.As a whole,Chinese scientists have achieved a profound understanding of the synoptic patterns,organization,and evolution characteristics of SCW from radar and satellite observations,and the mechanisms of different types of convective weather in China.Specifically,in-depth understanding of the multiple types of convection triggers,along with the environmental conditions,structures and organization modes,and maintenance mechanisms of supercell storms and squall lines,has been obtained.The organization modes and climatological distributions of mesoscale convective systems and different types of SCW,and the multiscale characteristics and formation mechanisms of large hail,tornadoes,downbursts,and damaging convective wind gusts based on radar,satellite,and lightning observations,as well as the related features from damage surveys,are elucidated.In terms of operational applications,different types of identification and mesoanalysis techniques,and various forecasting and nowcasting techniques using methods such as the"ingredients-based"and deep learning algorithms,have been developed.As a result,the performance of operational SCW forecasts in China has been significantly improved.展开更多
Located in the Asian monsoon region, China frequently experiences severe convective weather(SCW), such as short-duration heavy rainfall(SDHR), thunderstorm high winds, hails, and occasional tornadoes. Progress in SCW ...Located in the Asian monsoon region, China frequently experiences severe convective weather(SCW), such as short-duration heavy rainfall(SDHR), thunderstorm high winds, hails, and occasional tornadoes. Progress in SCW forecasting in China is closely related to the construction and development of meteorological observation networks,especially weather radar and meteorological satellite networks. In the late 1950 s, some county-level meteorological bureaus began to conduct empirical hail forecasting based on observations of clouds and surface meteorological variables. It took over half a century to develop a modern comprehensive operational monitoring and warning system for SCW forecast nationwide since the setup of the first weather radar in 1959. The operational SCW forecasting, including real-time monitoring, warnings valid for tens of minutes, watches valid for several hours, and outlooks covering lead times of up to three days, was established in 2009. Operational monitoring and forecasting of thunderstorms,SDHR, thunderstorm high winds, and hails have been carried out. The performance of operational SCW forecasting will be continually improved in the future with the development of convection-resolving numerical models(CRNMs), the upgrade of weather radar networks, the launch of new-generation meteorological satellites, better understanding of meso-γ and microscale SCW systems, and further application of artificial intelligence technology and CRNM predictions.展开更多
配电线路长期暴露于自然环境下,易受强对流天气影响而发生故障。2022年4月19日午后,受大风、雷电等高影响天气影响,陇南市13条配电线路先后出现故障。利用陇南市自动气象观测站的极大风速和闪电定位数据以及风云4A(FY-4A)红外云图、探...配电线路长期暴露于自然环境下,易受强对流天气影响而发生故障。2022年4月19日午后,受大风、雷电等高影响天气影响,陇南市13条配电线路先后出现故障。利用陇南市自动气象观测站的极大风速和闪电定位数据以及风云4A(FY-4A)红外云图、探空资料、多普勒天气雷达等资料,对此次强对流天气过程及其对电网影响进行分析。结果表明:(1)此次强对流天气以雷电、雷暴大风天气为主,西和、礼县、武都、康县等县(区)出现大面积用户停电和电力负荷损失等不利影响。(2)强对流发展主要受高原槽和切变线共同影响,在“上冷下暖”的大气层结不稳定条件下,由地面辐合线触发较强的雷暴大风天气;卫星云图和雷达回波也显示对流云团的发生发展与地面雷暴大风相吻合。(3)陇南市配电线路故障范围分布与强对流天气发生时间和过境路径基本一致,利用逐10 min极大风速和闪电定位数据,探讨得出当极大风速值超过15.0 m·s^(-1)、或正地闪电流强度超过43 k A、或负地闪电流强度超过26 k A时,配电线路发生故障的可能性较大。展开更多
基金National Key Research and Development Program of China(2019YFC1510400)National Natural Science Foundation of China(41975056,41675045)。
文摘Composite radar reflectivity data during April-September 2011-2015 are used to investigate and classify storms in south China(18-27°N;105-120°E). The storms appear most frequently in May. They are either linear;cellular or nonlinear systems, taking up 29.45%, 24.51% and 46.04%, respectively, in terms of morphology. Linear systems are subdivided into six morphologies: trailing stratiform precipitation(TS), bow echoes(BE), leading stratiform precipitation(LS), embedded line(EL), no stratiform precipitation(NS) and parallel stratiform precipitation(PS). The TS and NS modes have the highest frequencies but there are only small samples of LS(0.61%) and PS(0.79%) modes.Severe convective wind(≥17m s-1at surface level) accounts for the highest percentage(35%) of severe convective weather events produced by cellular systems including individual cells(IC) and clusters of cells(CC). Short-duration heavy rainfall(≥50 mm h-1) and severe convective wind are the most common severe weather associated with TS and BE modes. Comparison of environmental physical parameters shows that cellular convection systems tend to occur in the environment with favorable thermal condition, substantial unstable energy and low precipitable water from the surface to300 hPa(PWAT). However, the environmental conditions favoring the initiation of linear systems feature strong vertical wind shear, high PWAT, and intense convective inhibition. The environmental parameters favoring the initiation of nonlinear systems are between those of the other two types of morphology.
基金supported by the National Natural Science Foundation of China (Grant No.41375051 and 41505038)
文摘Severe weather reports and composite radar reflectivity data from 2010-14 over North China were used to analyze the distribution of severe convective wind(SCW) events and their organizational modes of radar reflectivity. The six organizational modes for SCW events(and their proportions) were cluster cells(35.4%), squall lines(18.4%), nonlinear-shaped systems(17.8%), broken lines(11.6%), individual cells(1.2%), and bow echoes(0.5%). The peak month for both squall lines and broken lines was June, whereas it was July for the other four modes. The highest numbers of SCW events were over the mountains, which were generally associated with disorganized systems of cluster cells. In contrast, SCW associated with linear systems occurred mainly over the plains, where stations recorded an average of less than one SCW event per year. Regions with a high frequency of SCW associated with nonlinear-shaped systems also experienced many SCW events associated with squall lines. Values of convective available potential energy, precipitable water, 0-3-km shear, and 0-6-km shear, were demonstrably larger over the plains than over the mountains, which had an evident effect on the organizational modes of SCW events. Therefore, topography may be an important factor in the organizational modes for SCW events over North China.
文摘Based on the disaster reports,NCEP2.5X2.5 reanalysis data and radiosonde data of 11 national stations in Ulanqab region from June to August during 2012-2017,the weather situation classification and warning indicators of thunderstorm and gale,hail and short-term heavy rainfall were studied.The results show that the cold vortex weather situation was easy to produce hail,and the falling area of severe convection could be found in the downstream of the cold vortex,the intersection area of jet stream at 200 and 500 hPa,and the wet area side of the 700 hPa main line.The cold trough type weather situation was easy to produce thunderstorm and gale,and the falling area of severe convection appeared on the right side of the upper jet stream axis,the left side of the lower jet stream axis,the wet side of the 700 hPa main line,and the east of the shear line at 700 hPa.The weather situation of the low trough and subtropical high type was dominated by short-term rainstorm,and the falling area of severe convection was on the right side of upper jet stream at 200 hPa,the left side of the low southeast jet stream,and the wet side of the 700 hPa main line.The warning index thresholds of the total index,the temperature change at 850-500 hPa with height,the height of 0 and-20℃layer,lifting condensation height,temperature dew point difference and mixing ratio were highly reliable.
文摘Severe convective weather can lead to a variety of disasters, but they are still difficult to be pre-warned and forecasted in the meteorological operation. This study generates a model based on the light gradient boosting machine (LightGBM) algorithm using C-band radar echo products and ground observations, to identify and classify three major types of severe convective weather (</span><i><span style="font-family:Verdana;">i.e.</span></i><span style="font-family:Verdana;">, hail, short-term heavy rain (STHR), convective gust (CG)). The model evaluations show the LightGBM model performs well in the training set (2011-2017) and the testing set (2018) with the overall false identification ratio (FIR) of only 4.9% and 7.0%, respectively. Furthermore, the average probability of detection (POD), critical success index (CSI) and false alarm ratio (FAR) for the three types of severe convective weather in two sample sets are over 85%, 65% and lower than 30%, respectively. The LightGBM model and the storm cell identification and tracking (SCIT) product are then used to forecast the severe convective weather 15 - 60 minutes in advance. The average POD, CSI and FAR for the forecasts of the three types of severe convective weather are 57.4%, 54.7% and 38.4%, respectively, which are significantly higher than those of the manual work. Among the three types of severe convective weather, the STHR has the highest POD and CSI and the lowest FAR, while the skill scores for the hail and CG are similar. Therefore, the LightGBM model constructed in this paper is able to identify, classify and forecast the three major types of severe convective weather automatically with relatively high accuracy, and has a broad application prospect in the future automatic meteorological operation.
基金Major Basic Research Cultivation Project of Natural Science Foundation of Guangdong Province(2015A030308014)Special Fund for Promoting High-Special Fund for Promoting High-Quality Economic Development in Guangdong Province(Marine Economic Development Project)(GDOE[2019]A11)+1 种基金Climate Change Special Fund of China Meteorological Administration(CCSF202012)Science and Technology Innovation Team Fund of Guangdong Meteorological Bureau(201701)。
文摘In the present study,a hazard model of severe convective weather was constructed on the basis of meteorological observational data obtained in Guangdong Province between 2003 and 2015.In the analysis,quality control was first conducted on the severe convective weather data,and the kriging method was then used to interpolate each hazard-formative factor.The weights of which were determined by applying the coefficient of variation method.The results were used to establish the hazard-formative factor model of severe convective weather.The cities showing the greatest hazards for severe convective weather in Guangdong Province include Yangjiang,Dongguan,Foshan,Huizhou,Jiangmen,and Qingyuan.
基金Supported by Special Project for Forecasters of China Meteorological Administration(CMAYBY2020-096)Meteorological Scientific Research Plan Project of Guangxi Meteorological Bureau(GUIQIKE2017Z06)。
文摘Based on conventional meteorological observation data and Doppler radar data,the occurrence and development mechanism of mixed severe convective weather and evolution of convective storm in Guangxi on March 4,2018 were analyzed. The results showed that the dry line was the main trigger mechanism of this severe convective weather. Instable convection stratification of cold advection at middle layer and warm advection at low layer and abundant water vapor from low-level jet provided favorable stratification and water vapor conditions for the occurrence and development of severe convection. Cold trough at middle layer,low pressure and strong vertical wind shear at middle and lower layers may be main factors for the development and maintenance of strong storm system. Squall line developed along ground convergence line,and there was bow echo on reflectivity factor chart. Moving velocity of convective system was quick,and there was gale core and velocity ambiguity on velocity map.
基金supported jointly by the National Key Basic Research and Development (973) Program of China (Grant No. 2014CB441401)the National Natural Science Foundation of China (Grant Nos. 41405007, 41175043, 41475002, and 41205027)
文摘Two intense quasi-linear mesoscale convective systems(QLMCSs) in northern China were simulated using the WRF(Weather Research and Forecasting) model and the 3D-Var(three-dimensional variational) analysis system of the ARPS(Advanced Regional Prediction System) model.A new method in which the lightning density is calculated using both the precipitation and non-precipitation ice mass was developed to reveal the relationship between the lightning activities and QLMCS structures.Results indicate that,compared with calculating the results using two previous methods,the lightning density calculated using the new method presented in this study is in better accordance with observations.Based on the calculated lightning densities using the new method,it was found that most lightning activity was initiated on the right side and at the front of the QLMCSs,where the surface wind field converged intensely.The CAPE was much stronger ahead of the southeastward progressing QLMCS than to the back it,and their lightning events mainly occurred in regions with a large gradient of CAPE.Comparisons between lightning and non-lightning regions indicated that lightning regions featured more intense ascending motion than non-lightning regions;the vertical ranges of maximum reflectivity between lightning and non-lightning regions were very different;and the ice mixing ratio featured no significant differences between the lightning and non-lightning regions.
基金Supported by the National(Key)Basic Research and Development(973)Program of China(2012CB417202)National Natural Science Foundation of China(41175049 and 41221064)+1 种基金National Science and Technology Support Program of China(2012BAC22B03)Basic Research Fund of the Chinese Academy of Meteorological Sciences(2012Y001)
文摘Based on the Tropical Rainfall Measuring Mission(TRMM) precipitation radar observations, wide convection(WC) is defined as contiguous convective echoes over 40 d BZ, accompanied with a near surface rainfall area exceeding 1000 km^2. In Southeast China, the maximal occurrence frequency of WC takes place over the flat land region in the central plain of East China during the summer monsoon period of 1998–2010. When WC occurs in this region, the 500-h Pa atmospheric fields are categorized into three patterns by using an objective classification method, i.e., the deep-trough-control(DTr) pattern, the subtropical-highmaintenance(STH) pattern, and the typhoon-effect(Typh) pattern, which respectively accounts for 20.8%,52.8%, and 26.4% of the total WC occurrences. The DTr pattern starts to emerge the earliest(16–31 May)and occurs the most often in the second half of June; the STH pattern has a significant occurrence peak in the first half of July; the Typh pattern occurs mostly in July and August.Nearly all WC occurrences in this region are associated with thunderstorms, due to large convective available potential energy and abundant moisture. Among the three synoptic patterns, the DTr pattern features the driest and coldest air in the region, leading to the least occurrences of short-duration heavy rainfall. Strong winds occur the most often under the DTr pattern, probably owing to the largest difference in air humidity between the mid and low troposphere. Hail at the surface is rare for all occurrences of WC,which is probably related to the humid environmental air under all weather patterns and the high(〉 5 km)freezing level under the STH pattern.
基金supported by the National Natural Science Foundation of China(Grant Nos.42375008,41975056,42005006)the National Key Scientific and Technological Infrastructure Project“Earth System Numerical Simulation Facility”(EarthLab)the Beijing Municipal Natural Science Foundation(Grant No.8222079)。
文摘Based on the significant weather report,CG lightning,composite radar reflectivity,and ERA5 reanalysis data,we first studied the spatiotemporal distribution characteristics of four types(only severe convective wind(SCW);SCW and hail;SCW and short-duration heavy rainfall(SDHR);and SCW,hail,and SDHR)of convective weather events related to SCW during the warm season(May to September)from 2011 to 2018 in North China.Second,severe convective cases producing SCW were selected to statistically analyze the initiation,decay,lifetime,and organizational characteristics of convective systems.Finally,using ERA5 reanalysis data and conventional surface observation data,preconvective soundings were constructed to explore the differences in environmental conditions for initiating convective systems between SCW and non-SCW.The results indicate that mixed-type of SCW and SDHR events occur more frequently over plains,while other types of convective weather occur more frequently over mountains.The frequency peak of SCW occurs in June,while mixed convective weather peaks in July.The initiation time of convective systems is concentrated between 1000 and 1300 BST,with a peak at 1200 BST.Over mountains,the daily peaks of ordinary and significant SCW generally occur at 1700-1800 BST and 1600-1700 BST,respectively,while over plains,the peak of ordinary SCW typically lags behind that of mountains by 1-2 hours.Additionally,SCW systems are mainly initiated over mountains,with most lifetimes lasting 7–13 hours.Nonlinear convective systems produce the most SCW events,followed by trailing-stratiform convective systems.The convective available potential energy(CAPE),downdraft convective available potential energy,and the temperature difference between 850 and 500 hPa can all distinguish between SCW systems and non-SCW systems occurring over plains.Compared to non-SCW convective systems,SCW convective systems over mountains are more likely to occur in environments with less precipitable water,while SCW convective systems over plains are more likely to occur in environments with higher CAPE and stronger deep-layer wind shear.
基金Supported by the National Key Research and Development Program of China(2018YFC1507504 and 2017YFC1502000)National Natural Science Foundation of China(41775044 and 41375051)Strategic Research Projects on Medium-and Long-term Development of Chinese Engineering Science and Technology(2019-ZCQ-06)。
文摘This article reviews the advances in severe convection research and operation in China during the past several decades.The favorable synoptic situations for severe convective weather(SCW),the major organization modes of severe convective storms(SCSs),the favorable environmental conditions and characteristics of weather radar echoes and satellite images of SCW and SCSs,and the forecasting and nowcasting techniques of SCW,are emphasized.As a whole,Chinese scientists have achieved a profound understanding of the synoptic patterns,organization,and evolution characteristics of SCW from radar and satellite observations,and the mechanisms of different types of convective weather in China.Specifically,in-depth understanding of the multiple types of convection triggers,along with the environmental conditions,structures and organization modes,and maintenance mechanisms of supercell storms and squall lines,has been obtained.The organization modes and climatological distributions of mesoscale convective systems and different types of SCW,and the multiscale characteristics and formation mechanisms of large hail,tornadoes,downbursts,and damaging convective wind gusts based on radar,satellite,and lightning observations,as well as the related features from damage surveys,are elucidated.In terms of operational applications,different types of identification and mesoanalysis techniques,and various forecasting and nowcasting techniques using methods such as the"ingredients-based"and deep learning algorithms,have been developed.As a result,the performance of operational SCW forecasts in China has been significantly improved.
基金Sponsored by the National Key Research and Development Program of China(2017YFC1502003 and 2018YFC1507504)National Natural Science Foundation of China(41675045 and 41375051)Strategic Research Projects on Medium-and Long-Term Development of Chinese Engineering Science and Technology(2019-ZCQ-06)。
文摘Located in the Asian monsoon region, China frequently experiences severe convective weather(SCW), such as short-duration heavy rainfall(SDHR), thunderstorm high winds, hails, and occasional tornadoes. Progress in SCW forecasting in China is closely related to the construction and development of meteorological observation networks,especially weather radar and meteorological satellite networks. In the late 1950 s, some county-level meteorological bureaus began to conduct empirical hail forecasting based on observations of clouds and surface meteorological variables. It took over half a century to develop a modern comprehensive operational monitoring and warning system for SCW forecast nationwide since the setup of the first weather radar in 1959. The operational SCW forecasting, including real-time monitoring, warnings valid for tens of minutes, watches valid for several hours, and outlooks covering lead times of up to three days, was established in 2009. Operational monitoring and forecasting of thunderstorms,SDHR, thunderstorm high winds, and hails have been carried out. The performance of operational SCW forecasting will be continually improved in the future with the development of convection-resolving numerical models(CRNMs), the upgrade of weather radar networks, the launch of new-generation meteorological satellites, better understanding of meso-γ and microscale SCW systems, and further application of artificial intelligence technology and CRNM predictions.
基金National Natural Science Foundation of China (NoA0905019, 40975023 ) The R & D Special Foundation for Public Welfare Industry (Meteorol- ogy) (No. GYHY200906003)
文摘配电线路长期暴露于自然环境下,易受强对流天气影响而发生故障。2022年4月19日午后,受大风、雷电等高影响天气影响,陇南市13条配电线路先后出现故障。利用陇南市自动气象观测站的极大风速和闪电定位数据以及风云4A(FY-4A)红外云图、探空资料、多普勒天气雷达等资料,对此次强对流天气过程及其对电网影响进行分析。结果表明:(1)此次强对流天气以雷电、雷暴大风天气为主,西和、礼县、武都、康县等县(区)出现大面积用户停电和电力负荷损失等不利影响。(2)强对流发展主要受高原槽和切变线共同影响,在“上冷下暖”的大气层结不稳定条件下,由地面辐合线触发较强的雷暴大风天气;卫星云图和雷达回波也显示对流云团的发生发展与地面雷暴大风相吻合。(3)陇南市配电线路故障范围分布与强对流天气发生时间和过境路径基本一致,利用逐10 min极大风速和闪电定位数据,探讨得出当极大风速值超过15.0 m·s^(-1)、或正地闪电流强度超过43 k A、或负地闪电流强度超过26 k A时,配电线路发生故障的可能性较大。