The problem of prescribed performance tracking control for unknown time-delay nonlinear systems subject to output constraints is dealt with in this paper. In contrast with related works, only the most fundamental requ...The problem of prescribed performance tracking control for unknown time-delay nonlinear systems subject to output constraints is dealt with in this paper. In contrast with related works, only the most fundamental requirements, i.e., boundedness and the local Lipschitz condition, are assumed for the allowable time delays. Moreover, we focus on the case where the reference is unknown beforehand, which renders the standard prescribed performance control designs under output constraints infeasible. To conquer these challenges, a novel robust prescribed performance control approach is put forward in this paper.Herein, a reverse tuning function is skillfully constructed and automatically generates a performance envelop for the tracking error. In addition, a unified performance analysis framework based on proof by contradiction and the barrier function is established to reveal the inherent robustness of the control system against the time delays. It turns out that the system output tracks the reference with a preassigned settling time and good accuracy,without constraint violations. A comparative simulation on a two-stage chemical reactor is carried out to illustrate the above theoretical findings.展开更多
The economic operation of integrated energy system(IES)faces new challenges such as multi-timescale characteristics of heterogeneous energy sources,and cooperative operation of hybrid energy storage system(HESS).To th...The economic operation of integrated energy system(IES)faces new challenges such as multi-timescale characteristics of heterogeneous energy sources,and cooperative operation of hybrid energy storage system(HESS).To this end,this paper investigates the multi-timescale rolling opti-mization problem for IES integrated with HESS.Firstly,the architecture of IES with HESS is established,a comparative analysis is conducted to evaluate the advantages of the HESS over a single energy storage system(SESS)in stabilizing power fluctuations.Secondly,the dayahead and real-time scheduling cost functions of IES are established,the day-ahead scheduling mainly depends on operation costs of the components in IES,the real-time optimal scheduling adopts the Lya-punov optimization method to schedule the battery and hydrogen energy storage in each time slot,so as to minimize the real-time average scheduling operation cost,and the problem of day-ahead and real-time scheduling error,which caused by the uncertainty of the energy storage is solved by online optimization.Finally,the proposed model is verified to reduce the scheduling operation cost and the dispatching error by performing an arithmetic example analysis of the IES in Shanghai,which provides a reference for the safe and stable operation of the IES.展开更多
Orthogonal time-frequency space(OTFS),which exhibits beneficial advantages in high-mobility scenarios,has been considered as a promising technology in future wireless communication systems.In this paper,a universal mo...Orthogonal time-frequency space(OTFS),which exhibits beneficial advantages in high-mobility scenarios,has been considered as a promising technology in future wireless communication systems.In this paper,a universal model for OTFS systems with generalized waveform has been developed.Furthermore,the average bit error probability(ABEP)upper bounds of the optimal maximum likelihood(ML)detector are first derived for OTFS systems with generalized waveforms.Specifically,for OTFS systems with the ideal waveform,we elicit the ABEP bound by recombining the transmitted signal and the received signal.For OTFS systems with practical waveforms,a universal ABEP upper bound expression is derived using moment-generating function(MGF),which is further extended to MIMO-OTFS systems.Numerical results validate that our theoretical ABEP upper bounds are concur with the simulation performance achieved by ML detectors.展开更多
This paper is concerned with consensus of a secondorder linear time-invariant multi-agent system in the situation that there exists a communication delay among the agents in the network.A proportional-integral consens...This paper is concerned with consensus of a secondorder linear time-invariant multi-agent system in the situation that there exists a communication delay among the agents in the network.A proportional-integral consensus protocol is designed by using delayed and memorized state information.Under the proportional-integral consensus protocol,the consensus problem of the multi-agent system is transformed into the problem of asymptotic stability of the corresponding linear time-invariant time-delay system.Note that the location of the eigenvalues of the corresponding characteristic function of the linear time-invariant time-delay system not only determines the stability of the system,but also plays a critical role in the dynamic performance of the system.In this paper,based on recent results on the distribution of roots of quasi-polynomials,several necessary conditions for Hurwitz stability for a class of quasi-polynomials are first derived.Then allowable regions of consensus protocol parameters are estimated.Some necessary and sufficient conditions for determining effective protocol parameters are provided.The designed protocol can achieve consensus and improve the dynamic performance of the second-order multi-agent system.Moreover,the effects of delays on consensus of systems of harmonic oscillators/double integrators under proportional-integral consensus protocols are investigated.Furthermore,some results on proportional-integral consensus are derived for a class of high-order linear time-invariant multi-agent systems.展开更多
Aiming at the tracking problem of a class of discrete nonaffine nonlinear multi-input multi-output(MIMO) repetitive systems subjected to separable and nonseparable disturbances, a novel data-driven iterative learning ...Aiming at the tracking problem of a class of discrete nonaffine nonlinear multi-input multi-output(MIMO) repetitive systems subjected to separable and nonseparable disturbances, a novel data-driven iterative learning control(ILC) scheme based on the zeroing neural networks(ZNNs) is proposed. First, the equivalent dynamic linearization data model is obtained by means of dynamic linearization technology, which exists theoretically in the iteration domain. Then, the iterative extended state observer(IESO) is developed to estimate the disturbance and the coupling between systems, and the decoupled dynamic linearization model is obtained for the purpose of controller synthesis. To solve the zero-seeking tracking problem with inherent tolerance of noise,an ILC based on noise-tolerant modified ZNN is proposed. The strict assumptions imposed on the initialization conditions of each iteration in the existing ILC methods can be absolutely removed with our method. In addition, theoretical analysis indicates that the modified ZNN can converge to the exact solution of the zero-seeking tracking problem. Finally, a generalized example and an application-oriented example are presented to verify the effectiveness and superiority of the proposed process.展开更多
Orthogonal time frequency space(OTFS)technique, which modulates data symbols in the delayDoppler(DD) domain, presents a potential solution for supporting reliable information transmission in highmobility vehicular net...Orthogonal time frequency space(OTFS)technique, which modulates data symbols in the delayDoppler(DD) domain, presents a potential solution for supporting reliable information transmission in highmobility vehicular networks. In this paper, we study the issues of DD channel estimation for OTFS in the presence of fractional Doppler. We first propose a channel estimation algorithm with both low complexity and high accuracy based on the unitary approximate message passing(UAMP), which exploits the structured sparsity of the effective DD domain channel using hidden Markov model(HMM). The empirical state evolution(SE) analysis is then leveraged to predict the performance of our proposed algorithm. To refine the hyperparameters in the proposed algorithm,we derive the update criterion for the hyperparameters through the expectation-maximization(EM) algorithm. Finally, Our simulation results demonstrate that our proposed algorithm can achieve a significant gain over various baseline schemes.展开更多
The aim of this study was to carry out a dynamic simulation of the energy and environmental performance of a built space system, with a view to assessing its energy and environmental class. The use of a simulation and...The aim of this study was to carry out a dynamic simulation of the energy and environmental performance of a built space system, with a view to assessing its energy and environmental class. The use of a simulation and modeling tool, supported by various methodological references, formed the basis of our approach. Adopting a systemic perspective, we described the structural and functional aspects of the systems making up built spaces, as well as the associated energy flows. Our approach was also based on a typology, taking into account typical days, structural and functional configurations at different scales and angles of observation. The analysis tool we developed in Java was applied to the built space system of the Patte d’Oie university campus in Ouagadougou. Annual electricity consumption was measured at 124387.34 kWh, closely aligned with the average annual electricity bill (125224.31 kWh), with a maximum relative deviation of 1%, followed by a carbon emission balance of 58337.66 kg eq CO<sub>2</sub> per year. This validation confirmed the effectiveness of our tool. In addition, following the analysis of electricity consumption using our tool, the university campus was classified in energy class B and environmental class C. These results will be based on the emission factors of the energy mix of the West African Economic and Monetary Union (WAEMU) territory, with particular emphasis on Burkina Faso.展开更多
This paper presents a physically plausible and somewhat illuminating first step in extending the fundamental principles of mechanical stress and strain to space-time. Here the geometry of space-time, encoded in the me...This paper presents a physically plausible and somewhat illuminating first step in extending the fundamental principles of mechanical stress and strain to space-time. Here the geometry of space-time, encoded in the metric tensor, is considered to be made up of a dynamic lattice of extremely small, localized fields that form a perfectly elastic Lorentz symmetric space-time at the global (macroscopic) scale. This theoretical model of space-time at the Planck scale leads to a somewhat surprising result in which matter waves in curved space-time radiate thermal gravitational energy, as well as an equally intriguing relationship for the anomalous dispersion of light in a gravitational field.展开更多
In this paper, we will concern the existence, asymptotic behaviors and stability of forced pulsating waves for a Lotka-Volterra cooperative system with nonlocal effects under shifting habitats. By using the alternativ...In this paper, we will concern the existence, asymptotic behaviors and stability of forced pulsating waves for a Lotka-Volterra cooperative system with nonlocal effects under shifting habitats. By using the alternatively-coupling upper-lower solution method, we establish the existence of forced pulsating waves, as long as the shifting speed falls in a finite interval where the endpoints are obtained from KPP-Fisher speeds. The asymptotic behaviors of the forced pulsating waves are derived. Finally, with proper initial, the stability of the forced pulsating waves is studied by the squeezing technique based on the comparison principle.展开更多
A simple channel estimator for space-time coded orthogonal frequency division multiplexing (OFDM) systems in rapid fading channels is proposed. The channels at the training bauds are estimated using the EM (expectatio...A simple channel estimator for space-time coded orthogonal frequency division multiplexing (OFDM) systems in rapid fading channels is proposed. The channels at the training bauds are estimated using the EM (expectation-maximization) algorithm, while the channels at the data bauds are estimated based on the method for modelling the time-varying channel as the linear combination of several time-invariant " Doppler channels". Computer simulations showed that this estimator outperforms the decision-directed tracking in rapid fading channels and that the performance of this method can be improved by iteration.展开更多
Digital Communications, in relation to wireless networks, have taken off in recent years due to the expanding need to communicate faster and more efficiently. A popular way to achieve this is by using wireless Multipl...Digital Communications, in relation to wireless networks, have taken off in recent years due to the expanding need to communicate faster and more efficiently. A popular way to achieve this is by using wireless Multiple Input Multiple Output (MIMO) communication systems. MIMO systems utilize Space Time Block Codes (STBC) as one of the leading ways to obtain higher data rates with limited bandwidth and power. With several STBC methods currently available, this paper analyzes simulations using Orthogonal Space Time Block Codes (OSTBC) in Rayleigh fading channels to evaluate the performance of MIMO systems. The selection to use a Rayleigh fading channel as a model for a non-line-of-sight (nLOS) environment is selected to mimic installations where a large number of signal paths and reflections are expected. All simulations are coded, generated and plotted using MATLAB resulting in graphical data representing the bit-error rate (BER) to signal-to-noise ratio (Eb/N<sub>0</sub>) or SNR. Each simulation captures how different configurations of key variables including code rate, diversity and antenna count can impact system performance. Four modulation schemes (BPSK, QPSK, 16-QAM and 64-QAM) are included in each simulation. Conclusive evidence based upon these simulations suggests higher diversity gains were achieved with a greater number of antennas. The most significant factor for increasing system performance was using a lower count of transmit antennas with a higher count of receive antennas.展开更多
This paper addresses the problem of event-triggered finite-time H<sub>∞</sub> filter design for a class of discrete-time nonlinear stochastic systems with exogenous disturbances. The stochastic Lyapunov-K...This paper addresses the problem of event-triggered finite-time H<sub>∞</sub> filter design for a class of discrete-time nonlinear stochastic systems with exogenous disturbances. The stochastic Lyapunov-Krasoviskii functional method is adopted to design a filter such that the filtering error system is stochastic finite-time stable (SFTS) and preserves a prescribed performance level according to the pre-defined event-triggered criteria. Based on stochastic differential equations theory, some sufficient conditions for the existence of H<sub>∞</sub> filter are obtained for the suggested system by employing linear matrix inequality technique. Finally, the desired H<sub>∞</sub> filter gain matrices can be expressed in an explicit form.展开更多
This paper investigates the finite-time H<sub>∞</sub> control problem of switched nonlinear systems via state-dependent switching and state feedback control. Unlike the existing approach based on time-dep...This paper investigates the finite-time H<sub>∞</sub> control problem of switched nonlinear systems via state-dependent switching and state feedback control. Unlike the existing approach based on time-dependent switching strategy, in which the switching instants must be given in advance, the state-dependent switching strategy is used to design switching signals. Based on multiple Lyapunov-like functions method, several criteria for switched nonlinear systems to be finite-time H<sub>∞</sub> control are derived. Finally, a numerical example with simulation results is provided to show the validity of the conclusions.展开更多
Differential space-time (DST) modulation has been proposed recently for multiple-antenna systems over Rayleigh fading channels, where neither the transmitter nor the receiver knows the fading coefficients. Among exi...Differential space-time (DST) modulation has been proposed recently for multiple-antenna systems over Rayleigh fading channels, where neither the transmitter nor the receiver knows the fading coefficients. Among existing schemes, differential modulation is always performed in the time domain and suffers performance degradations in frequency-selective fading channels. In order to combat the fast time and frequency-selective fading, a novel time-frequency differential space-time (TF-DST) modulation scheme, which adopts differential modulation in both time and frequency domains, is proposed for multi-antenna orthogonal frequency division multiplexing (OFDM) system. A corresponding suboptimal yet low-complexity non-coherent detection approach is also proposed. Simulation results demonstrate that the proposed system is robust for time and frequency-selective Rayleigh fading channels.展开更多
Space-time signal processing based on multiple-input multiple-output(MIMO) systems is an active research field in which interfering signals are cancelled and multiuser detection is achieved using space diversity. In...Space-time signal processing based on multiple-input multiple-output(MIMO) systems is an active research field in which interfering signals are cancelled and multiuser detection is achieved using space diversity. In a Rayleigh fading channel, space-time block cedes using multiple transmitting antennas can improve system performance and reduce bit-error-rate for multiuser detection. In this paper, several antenna configurations are designed for DS-CDMA communication in MIMO systems. Space-time linear multinser detection and space-time serial interference cancellation multiuser detection are simulated. Bit-error-rate and computation complexities of the two methods are compared. Conclusions are given in the end.展开更多
In this paper, performance of space-time trellis-code (STTC), space-time block code (STBC), and space-time trellis-code concatenated with space-time block code (STTC-STBC) for multi-carrier code-division multiple-acce...In this paper, performance of space-time trellis-code (STTC), space-time block code (STBC), and space-time trellis-code concatenated with space-time block code (STTC-STBC) for multi-carrier code-division multiple-access (MC-CDMA) system are studied. These schemes are considered by employing different detection techniques with various multi input multi output (MIMO) antenna diversity for different number of states in multi-path fading channel. The corresponding bit error rate (BER) is obtained using simulation for minimum mean-square error (MMSE), maximum-ratio combining (MRC), and equal-gain combining (EGC) receivers employing Viterbi decoder. The simulation results show that the STTC-STBC MC-CDMA system perform better compared to other schemes considered in this paper using MMSE detection and it is also observed that the performance can also be enhanced by increasing diversity using more transmitter and receiver antennas. However, this improvement in performance comes at the cost of increased computational complexity, which is calculated for different transmitting and receiving antennas.展开更多
Quadratic programming models for integrated space-time interference suppression in CDMA systems are proposed in this paper. The models integrate the advantages of smart antenna and RAKE receiver, mitigate multiuser ac...Quadratic programming models for integrated space-time interference suppression in CDMA systems are proposed in this paper. The models integrate the advantages of smart antenna and RAKE receiver, mitigate multiuser access interference (MAI) and interchip interference (ICI),and combine multipath components. The zero-forcing conditions are derived. Neural network implementation of the models is also studied.展开更多
Multiple antenna wireless systems can provide larger channel capacity and enable spatial diversity to combat fading. In this paper we conduct an investigation into the design of coded space-time system obtained by ser...Multiple antenna wireless systems can provide larger channel capacity and enable spatial diversity to combat fading. In this paper we conduct an investigation into the design of coded space-time system obtained by serially concatenating channel code module and space-time code module with an interleaver in between. As an example, the system is constructed by employing low decoding complexity turbo-SPC (single parity check) code as outer module and linear complex field space-time code as inner module, which achieves full diversity and lossless equivalent channel capacity. Simulation results prove that our designed system performs well and it only loses 0.8 dB from multiple-input multiple-output (MIMO) capacity at BER = 10^-5 in the case of information bit length 6048. Compared with turbo code-based systems, it also has lower error floor.展开更多
Space-time coding is an important technique that can improve transmission performance at fading environments in mobile communication systems. In this paper, we propose a novel diversity scheme using spread spacetime b...Space-time coding is an important technique that can improve transmission performance at fading environments in mobile communication systems. In this paper, we propose a novel diversity scheme using spread spacetime block coding (SSTBC) in multiple antenna systems. At the transmitter, the primitive data are serial to parallel converted to multiple data streams, and each stream is rotated in constellation. Then Walsh codes are used to spread each symbol to all antenna space in a space-time block. The signals received from all receiver antennas are combined with the maximum ratio combining (MRC), equalized with linear equalizer to eliminate the inter-code interference and finally demodulated to recover to transmit data by using the one-symbol maximum likelihood detector. The proposed scheme does not sacrifice the spectrum efficiency meanwhile maintains the transceiver with low complexity. Owing to the transmission symbols of different transmit antennas passing through all the spatial subchannels between transceiver antenna pairs, the system obtains the partial additional space diversity gain of all spatial paths. It is also shown that the diversity gain is better than the previous space-time block coding (STBC) schemes with full transmission rate.展开更多
A cross-layer design(CLD)scheme with combination of power allocation,adaptive modulation(AM)and automatic repeat request(ARQ)is presented for space-time coded MIMO system under imperfect feedback,and the corresponding...A cross-layer design(CLD)scheme with combination of power allocation,adaptive modulation(AM)and automatic repeat request(ARQ)is presented for space-time coded MIMO system under imperfect feedback,and the corresponding system performance is investigated in a Rayleigh fading channel.Based on imperfect feedback information,a suboptimal power allocation(PA)scheme is derived to maximize the average spectral efficiency(SE)of the system.The scheme is based on a so-called compressed SNR criterion,and has a closed-form expression for positive power allocation,thus being computationally efficient.Moreover,it can improve SE of the presented CLD.Besides,due to better approximation,it obtains the performance close to the existing optimal approach which requires numerical search.Simulation results show that the proposed CLD with PA can achieve higher SE than the conventional CLD with equal power allocation scheme,and has almost the same performance as CLD with optimal PA.However,it has lower calculation complexity.展开更多
基金supported in part by the National Natural Science Foundation of China (62103093)the National Key Research and Development Program of China (2022YFB3305905)+6 种基金the Xingliao Talent Program of Liaoning Province of China (XLYC2203130)the Fundamental Research Funds for the Central Universities of China (N2108003)the Natural Science Foundation of Liaoning Province (2023-MS-087)the BNU Talent Seed Fund,UIC Start-Up Fund (R72021115)the Guangdong Key Laboratory of AI and MM Data Processing (2020KSYS007)the Guangdong Provincial Key Laboratory IRADS for Data Science (2022B1212010006)the Guangdong Higher Education Upgrading Plan 2021–2025 of “Rushing to the Top,Making Up Shortcomings and Strengthening Special Features” with UIC Research,China (R0400001-22,R0400025-21)。
文摘The problem of prescribed performance tracking control for unknown time-delay nonlinear systems subject to output constraints is dealt with in this paper. In contrast with related works, only the most fundamental requirements, i.e., boundedness and the local Lipschitz condition, are assumed for the allowable time delays. Moreover, we focus on the case where the reference is unknown beforehand, which renders the standard prescribed performance control designs under output constraints infeasible. To conquer these challenges, a novel robust prescribed performance control approach is put forward in this paper.Herein, a reverse tuning function is skillfully constructed and automatically generates a performance envelop for the tracking error. In addition, a unified performance analysis framework based on proof by contradiction and the barrier function is established to reveal the inherent robustness of the control system against the time delays. It turns out that the system output tracks the reference with a preassigned settling time and good accuracy,without constraint violations. A comparative simulation on a two-stage chemical reactor is carried out to illustrate the above theoretical findings.
基金supported by the National Natural Science Foundation of China(No.12171145)。
文摘The economic operation of integrated energy system(IES)faces new challenges such as multi-timescale characteristics of heterogeneous energy sources,and cooperative operation of hybrid energy storage system(HESS).To this end,this paper investigates the multi-timescale rolling opti-mization problem for IES integrated with HESS.Firstly,the architecture of IES with HESS is established,a comparative analysis is conducted to evaluate the advantages of the HESS over a single energy storage system(SESS)in stabilizing power fluctuations.Secondly,the dayahead and real-time scheduling cost functions of IES are established,the day-ahead scheduling mainly depends on operation costs of the components in IES,the real-time optimal scheduling adopts the Lya-punov optimization method to schedule the battery and hydrogen energy storage in each time slot,so as to minimize the real-time average scheduling operation cost,and the problem of day-ahead and real-time scheduling error,which caused by the uncertainty of the energy storage is solved by online optimization.Finally,the proposed model is verified to reduce the scheduling operation cost and the dispatching error by performing an arithmetic example analysis of the IES in Shanghai,which provides a reference for the safe and stable operation of the IES.
基金supported in part by the National Key Research and Development Program of China under Grant 2021YFB2900502the National Science Foundation of China under Grant 62001179the Fundamental Research Funds for the Central Universities under Grant 2020kfyXJJS111。
文摘Orthogonal time-frequency space(OTFS),which exhibits beneficial advantages in high-mobility scenarios,has been considered as a promising technology in future wireless communication systems.In this paper,a universal model for OTFS systems with generalized waveform has been developed.Furthermore,the average bit error probability(ABEP)upper bounds of the optimal maximum likelihood(ML)detector are first derived for OTFS systems with generalized waveforms.Specifically,for OTFS systems with the ideal waveform,we elicit the ABEP bound by recombining the transmitted signal and the received signal.For OTFS systems with practical waveforms,a universal ABEP upper bound expression is derived using moment-generating function(MGF),which is further extended to MIMO-OTFS systems.Numerical results validate that our theoretical ABEP upper bounds are concur with the simulation performance achieved by ML detectors.
基金supported in part by the National Natural Science Foundation of China (NSFC)(61703086, 61773106)the IAPI Fundamental Research Funds (2018ZCX27)
文摘This paper is concerned with consensus of a secondorder linear time-invariant multi-agent system in the situation that there exists a communication delay among the agents in the network.A proportional-integral consensus protocol is designed by using delayed and memorized state information.Under the proportional-integral consensus protocol,the consensus problem of the multi-agent system is transformed into the problem of asymptotic stability of the corresponding linear time-invariant time-delay system.Note that the location of the eigenvalues of the corresponding characteristic function of the linear time-invariant time-delay system not only determines the stability of the system,but also plays a critical role in the dynamic performance of the system.In this paper,based on recent results on the distribution of roots of quasi-polynomials,several necessary conditions for Hurwitz stability for a class of quasi-polynomials are first derived.Then allowable regions of consensus protocol parameters are estimated.Some necessary and sufficient conditions for determining effective protocol parameters are provided.The designed protocol can achieve consensus and improve the dynamic performance of the second-order multi-agent system.Moreover,the effects of delays on consensus of systems of harmonic oscillators/double integrators under proportional-integral consensus protocols are investigated.Furthermore,some results on proportional-integral consensus are derived for a class of high-order linear time-invariant multi-agent systems.
基金supported by the National Natural Science Foundation of China(U21A20166)in part by the Science and Technology Development Foundation of Jilin Province (20230508095RC)+1 种基金in part by the Development and Reform Commission Foundation of Jilin Province (2023C034-3)in part by the Exploration Foundation of State Key Laboratory of Automotive Simulation and Control。
文摘Aiming at the tracking problem of a class of discrete nonaffine nonlinear multi-input multi-output(MIMO) repetitive systems subjected to separable and nonseparable disturbances, a novel data-driven iterative learning control(ILC) scheme based on the zeroing neural networks(ZNNs) is proposed. First, the equivalent dynamic linearization data model is obtained by means of dynamic linearization technology, which exists theoretically in the iteration domain. Then, the iterative extended state observer(IESO) is developed to estimate the disturbance and the coupling between systems, and the decoupled dynamic linearization model is obtained for the purpose of controller synthesis. To solve the zero-seeking tracking problem with inherent tolerance of noise,an ILC based on noise-tolerant modified ZNN is proposed. The strict assumptions imposed on the initialization conditions of each iteration in the existing ILC methods can be absolutely removed with our method. In addition, theoretical analysis indicates that the modified ZNN can converge to the exact solution of the zero-seeking tracking problem. Finally, a generalized example and an application-oriented example are presented to verify the effectiveness and superiority of the proposed process.
基金supported by the Key Scientific Research Project in Colleges and Universities of Henan Province of China(Grant Nos.21A510003)Science and the Key Science and Technology Research Project of Henan Province of China(Grant Nos.222102210053)。
文摘Orthogonal time frequency space(OTFS)technique, which modulates data symbols in the delayDoppler(DD) domain, presents a potential solution for supporting reliable information transmission in highmobility vehicular networks. In this paper, we study the issues of DD channel estimation for OTFS in the presence of fractional Doppler. We first propose a channel estimation algorithm with both low complexity and high accuracy based on the unitary approximate message passing(UAMP), which exploits the structured sparsity of the effective DD domain channel using hidden Markov model(HMM). The empirical state evolution(SE) analysis is then leveraged to predict the performance of our proposed algorithm. To refine the hyperparameters in the proposed algorithm,we derive the update criterion for the hyperparameters through the expectation-maximization(EM) algorithm. Finally, Our simulation results demonstrate that our proposed algorithm can achieve a significant gain over various baseline schemes.
文摘The aim of this study was to carry out a dynamic simulation of the energy and environmental performance of a built space system, with a view to assessing its energy and environmental class. The use of a simulation and modeling tool, supported by various methodological references, formed the basis of our approach. Adopting a systemic perspective, we described the structural and functional aspects of the systems making up built spaces, as well as the associated energy flows. Our approach was also based on a typology, taking into account typical days, structural and functional configurations at different scales and angles of observation. The analysis tool we developed in Java was applied to the built space system of the Patte d’Oie university campus in Ouagadougou. Annual electricity consumption was measured at 124387.34 kWh, closely aligned with the average annual electricity bill (125224.31 kWh), with a maximum relative deviation of 1%, followed by a carbon emission balance of 58337.66 kg eq CO<sub>2</sub> per year. This validation confirmed the effectiveness of our tool. In addition, following the analysis of electricity consumption using our tool, the university campus was classified in energy class B and environmental class C. These results will be based on the emission factors of the energy mix of the West African Economic and Monetary Union (WAEMU) territory, with particular emphasis on Burkina Faso.
文摘This paper presents a physically plausible and somewhat illuminating first step in extending the fundamental principles of mechanical stress and strain to space-time. Here the geometry of space-time, encoded in the metric tensor, is considered to be made up of a dynamic lattice of extremely small, localized fields that form a perfectly elastic Lorentz symmetric space-time at the global (macroscopic) scale. This theoretical model of space-time at the Planck scale leads to a somewhat surprising result in which matter waves in curved space-time radiate thermal gravitational energy, as well as an equally intriguing relationship for the anomalous dispersion of light in a gravitational field.
文摘In this paper, we will concern the existence, asymptotic behaviors and stability of forced pulsating waves for a Lotka-Volterra cooperative system with nonlocal effects under shifting habitats. By using the alternatively-coupling upper-lower solution method, we establish the existence of forced pulsating waves, as long as the shifting speed falls in a finite interval where the endpoints are obtained from KPP-Fisher speeds. The asymptotic behaviors of the forced pulsating waves are derived. Finally, with proper initial, the stability of the forced pulsating waves is studied by the squeezing technique based on the comparison principle.
文摘A simple channel estimator for space-time coded orthogonal frequency division multiplexing (OFDM) systems in rapid fading channels is proposed. The channels at the training bauds are estimated using the EM (expectation-maximization) algorithm, while the channels at the data bauds are estimated based on the method for modelling the time-varying channel as the linear combination of several time-invariant " Doppler channels". Computer simulations showed that this estimator outperforms the decision-directed tracking in rapid fading channels and that the performance of this method can be improved by iteration.
文摘Digital Communications, in relation to wireless networks, have taken off in recent years due to the expanding need to communicate faster and more efficiently. A popular way to achieve this is by using wireless Multiple Input Multiple Output (MIMO) communication systems. MIMO systems utilize Space Time Block Codes (STBC) as one of the leading ways to obtain higher data rates with limited bandwidth and power. With several STBC methods currently available, this paper analyzes simulations using Orthogonal Space Time Block Codes (OSTBC) in Rayleigh fading channels to evaluate the performance of MIMO systems. The selection to use a Rayleigh fading channel as a model for a non-line-of-sight (nLOS) environment is selected to mimic installations where a large number of signal paths and reflections are expected. All simulations are coded, generated and plotted using MATLAB resulting in graphical data representing the bit-error rate (BER) to signal-to-noise ratio (Eb/N<sub>0</sub>) or SNR. Each simulation captures how different configurations of key variables including code rate, diversity and antenna count can impact system performance. Four modulation schemes (BPSK, QPSK, 16-QAM and 64-QAM) are included in each simulation. Conclusive evidence based upon these simulations suggests higher diversity gains were achieved with a greater number of antennas. The most significant factor for increasing system performance was using a lower count of transmit antennas with a higher count of receive antennas.
文摘This paper addresses the problem of event-triggered finite-time H<sub>∞</sub> filter design for a class of discrete-time nonlinear stochastic systems with exogenous disturbances. The stochastic Lyapunov-Krasoviskii functional method is adopted to design a filter such that the filtering error system is stochastic finite-time stable (SFTS) and preserves a prescribed performance level according to the pre-defined event-triggered criteria. Based on stochastic differential equations theory, some sufficient conditions for the existence of H<sub>∞</sub> filter are obtained for the suggested system by employing linear matrix inequality technique. Finally, the desired H<sub>∞</sub> filter gain matrices can be expressed in an explicit form.
文摘This paper investigates the finite-time H<sub>∞</sub> control problem of switched nonlinear systems via state-dependent switching and state feedback control. Unlike the existing approach based on time-dependent switching strategy, in which the switching instants must be given in advance, the state-dependent switching strategy is used to design switching signals. Based on multiple Lyapunov-like functions method, several criteria for switched nonlinear systems to be finite-time H<sub>∞</sub> control are derived. Finally, a numerical example with simulation results is provided to show the validity of the conclusions.
文摘Differential space-time (DST) modulation has been proposed recently for multiple-antenna systems over Rayleigh fading channels, where neither the transmitter nor the receiver knows the fading coefficients. Among existing schemes, differential modulation is always performed in the time domain and suffers performance degradations in frequency-selective fading channels. In order to combat the fast time and frequency-selective fading, a novel time-frequency differential space-time (TF-DST) modulation scheme, which adopts differential modulation in both time and frequency domains, is proposed for multi-antenna orthogonal frequency division multiplexing (OFDM) system. A corresponding suboptimal yet low-complexity non-coherent detection approach is also proposed. Simulation results demonstrate that the proposed system is robust for time and frequency-selective Rayleigh fading channels.
文摘Space-time signal processing based on multiple-input multiple-output(MIMO) systems is an active research field in which interfering signals are cancelled and multiuser detection is achieved using space diversity. In a Rayleigh fading channel, space-time block cedes using multiple transmitting antennas can improve system performance and reduce bit-error-rate for multiuser detection. In this paper, several antenna configurations are designed for DS-CDMA communication in MIMO systems. Space-time linear multinser detection and space-time serial interference cancellation multiuser detection are simulated. Bit-error-rate and computation complexities of the two methods are compared. Conclusions are given in the end.
文摘In this paper, performance of space-time trellis-code (STTC), space-time block code (STBC), and space-time trellis-code concatenated with space-time block code (STTC-STBC) for multi-carrier code-division multiple-access (MC-CDMA) system are studied. These schemes are considered by employing different detection techniques with various multi input multi output (MIMO) antenna diversity for different number of states in multi-path fading channel. The corresponding bit error rate (BER) is obtained using simulation for minimum mean-square error (MMSE), maximum-ratio combining (MRC), and equal-gain combining (EGC) receivers employing Viterbi decoder. The simulation results show that the STTC-STBC MC-CDMA system perform better compared to other schemes considered in this paper using MMSE detection and it is also observed that the performance can also be enhanced by increasing diversity using more transmitter and receiver antennas. However, this improvement in performance comes at the cost of increased computational complexity, which is calculated for different transmitting and receiving antennas.
基金Supported by the National Natural Science Foundation of China under Grant 69882004 and MPT Project
文摘Quadratic programming models for integrated space-time interference suppression in CDMA systems are proposed in this paper. The models integrate the advantages of smart antenna and RAKE receiver, mitigate multiuser access interference (MAI) and interchip interference (ICI),and combine multipath components. The zero-forcing conditions are derived. Neural network implementation of the models is also studied.
基金supported by the National Natural Science Foundation of China (Grant Nos.60332030, 60572157), and the National High-TechnologY Research and Development of China (Grant No.863-2003AA123310)
文摘Multiple antenna wireless systems can provide larger channel capacity and enable spatial diversity to combat fading. In this paper we conduct an investigation into the design of coded space-time system obtained by serially concatenating channel code module and space-time code module with an interleaver in between. As an example, the system is constructed by employing low decoding complexity turbo-SPC (single parity check) code as outer module and linear complex field space-time code as inner module, which achieves full diversity and lossless equivalent channel capacity. Simulation results prove that our designed system performs well and it only loses 0.8 dB from multiple-input multiple-output (MIMO) capacity at BER = 10^-5 in the case of information bit length 6048. Compared with turbo code-based systems, it also has lower error floor.
基金This project was supported by the National Science Foundation of China (60496314)
文摘Space-time coding is an important technique that can improve transmission performance at fading environments in mobile communication systems. In this paper, we propose a novel diversity scheme using spread spacetime block coding (SSTBC) in multiple antenna systems. At the transmitter, the primitive data are serial to parallel converted to multiple data streams, and each stream is rotated in constellation. Then Walsh codes are used to spread each symbol to all antenna space in a space-time block. The signals received from all receiver antennas are combined with the maximum ratio combining (MRC), equalized with linear equalizer to eliminate the inter-code interference and finally demodulated to recover to transmit data by using the one-symbol maximum likelihood detector. The proposed scheme does not sacrifice the spectrum efficiency meanwhile maintains the transceiver with low complexity. Owing to the transmission symbols of different transmit antennas passing through all the spatial subchannels between transceiver antenna pairs, the system obtains the partial additional space diversity gain of all spatial paths. It is also shown that the diversity gain is better than the previous space-time block coding (STBC) schemes with full transmission rate.
基金Supported by the Foundation of Huaian Industrial Projects(HAG2013064)the Foundation of Huaiyin Institute of Technology(HGB1202)the Doctoral Fund of Ministry of Education of China(20093218120021)
文摘A cross-layer design(CLD)scheme with combination of power allocation,adaptive modulation(AM)and automatic repeat request(ARQ)is presented for space-time coded MIMO system under imperfect feedback,and the corresponding system performance is investigated in a Rayleigh fading channel.Based on imperfect feedback information,a suboptimal power allocation(PA)scheme is derived to maximize the average spectral efficiency(SE)of the system.The scheme is based on a so-called compressed SNR criterion,and has a closed-form expression for positive power allocation,thus being computationally efficient.Moreover,it can improve SE of the presented CLD.Besides,due to better approximation,it obtains the performance close to the existing optimal approach which requires numerical search.Simulation results show that the proposed CLD with PA can achieve higher SE than the conventional CLD with equal power allocation scheme,and has almost the same performance as CLD with optimal PA.However,it has lower calculation complexity.