We propose and fabricate an A1GaN/GaN high electron mobility transistor (HEMT) on sapphire substrate using a new kind of electron beam (EB) lithography layout for the T-gate. Using this new layout,we can change th...We propose and fabricate an A1GaN/GaN high electron mobility transistor (HEMT) on sapphire substrate using a new kind of electron beam (EB) lithography layout for the T-gate. Using this new layout,we can change the aspect ratio (ratio of top gate dimension to gate length) and modify the shape of the T-gate freely. Therefore, we obtain a 0.18μm gate-length AlGaN/GaN HEMT with a unity current gain cutoff frequency (fT) of 65GHz. The aspect ratio of the T-gate is 10. These single finger devices also exhibit a peak extrinsic transconductance of 287mS/mm and a maximum drain current as high as 980mA/mm.展开更多
A self-aligned InP/GalnAs single heterojunction bipolar transistor(HBT) is investigated using a novel T-shaped emitter. A U-shaped emitter layout,selective wet etching,laterally etched undercut, and an air-bridge ar...A self-aligned InP/GalnAs single heterojunction bipolar transistor(HBT) is investigated using a novel T-shaped emitter. A U-shaped emitter layout,selective wet etching,laterally etched undercut, and an air-bridge are applied in this process. The device, which has a 2μm×12μm U-shaped emitter area,demonstrates a common-emitter DC current gain of 170,an offset voltage of 0.2V,a knee voltage of 0.5V, and an open-base breakdown voltage of over 2V. The HBT exhibits good microwave performance with a current gain cutoff frequency of 85GHz and a maximum oscillation frequency of 72GHz, These results indicate that these InP/InGaAs SHBTs are suitable for low-voltage,low-power,and high-frequency applications.展开更多
L( s, t)-labeling is a variation of graph coloring which is motivated by a special kind of the channel assignment problem. Let s and t be any two nonnegative integers. An L (s, t)-labeling of a graph G is an assig...L( s, t)-labeling is a variation of graph coloring which is motivated by a special kind of the channel assignment problem. Let s and t be any two nonnegative integers. An L (s, t)-labeling of a graph G is an assignment of integers to the vertices of G such that adjacent vertices receive integers which differ by at least s, and vertices that are at distance of two receive integers which differ by at least t. Given an L(s, t) -labeling f of a graph G, the L(s, t) edge span of f, βst ( G, f) = max { |f(u) -f(v)|: ( u, v) ∈ E(G) } is defined. The L( s, t) edge span of G, βst(G), is minβst(G,f), where the minimum runs over all L(s, t)-labelings f of G. Let T be any tree with a maximum degree of △≥2. It is proved that if 2s≥t≥0, then βst(T) =( [△/2 ] - 1)t +s; if 0≤2s 〈 t and △ is even, then βst(T) = [ (△ - 1) t/2 ] ; and if 0 ≤2s 〈 t and △ is odd, then βst(T) = (△ - 1) t/2 + s. Thus, the L(s, t) edge spans of the Cartesian product of two paths and of the square lattice are completely determined.展开更多
文摘We propose and fabricate an A1GaN/GaN high electron mobility transistor (HEMT) on sapphire substrate using a new kind of electron beam (EB) lithography layout for the T-gate. Using this new layout,we can change the aspect ratio (ratio of top gate dimension to gate length) and modify the shape of the T-gate freely. Therefore, we obtain a 0.18μm gate-length AlGaN/GaN HEMT with a unity current gain cutoff frequency (fT) of 65GHz. The aspect ratio of the T-gate is 10. These single finger devices also exhibit a peak extrinsic transconductance of 287mS/mm and a maximum drain current as high as 980mA/mm.
文摘A self-aligned InP/GalnAs single heterojunction bipolar transistor(HBT) is investigated using a novel T-shaped emitter. A U-shaped emitter layout,selective wet etching,laterally etched undercut, and an air-bridge are applied in this process. The device, which has a 2μm×12μm U-shaped emitter area,demonstrates a common-emitter DC current gain of 170,an offset voltage of 0.2V,a knee voltage of 0.5V, and an open-base breakdown voltage of over 2V. The HBT exhibits good microwave performance with a current gain cutoff frequency of 85GHz and a maximum oscillation frequency of 72GHz, These results indicate that these InP/InGaAs SHBTs are suitable for low-voltage,low-power,and high-frequency applications.
基金The National Natural Science Foundation of China(No10671033)Southeast University Science Foundation ( NoXJ0607230)
文摘L( s, t)-labeling is a variation of graph coloring which is motivated by a special kind of the channel assignment problem. Let s and t be any two nonnegative integers. An L (s, t)-labeling of a graph G is an assignment of integers to the vertices of G such that adjacent vertices receive integers which differ by at least s, and vertices that are at distance of two receive integers which differ by at least t. Given an L(s, t) -labeling f of a graph G, the L(s, t) edge span of f, βst ( G, f) = max { |f(u) -f(v)|: ( u, v) ∈ E(G) } is defined. The L( s, t) edge span of G, βst(G), is minβst(G,f), where the minimum runs over all L(s, t)-labelings f of G. Let T be any tree with a maximum degree of △≥2. It is proved that if 2s≥t≥0, then βst(T) =( [△/2 ] - 1)t +s; if 0≤2s 〈 t and △ is even, then βst(T) = [ (△ - 1) t/2 ] ; and if 0 ≤2s 〈 t and △ is odd, then βst(T) = (△ - 1) t/2 + s. Thus, the L(s, t) edge spans of the Cartesian product of two paths and of the square lattice are completely determined.