期刊文献+
共找到75篇文章
< 1 2 4 >
每页显示 20 50 100
基于t分布随机邻域嵌入算法的工业过程故障分类 被引量:4
1
作者 陶飞 苗爱敏 +2 位作者 李鹏 曹敏 李维 《南京理工大学学报》 EI CAS CSCD 北大核心 2020年第3期332-339,共8页
针对在工业过程中数据普遍存在的非线性特性,基于数据的局部相关关系对分类的影响,提出一种基于t分布随机邻域嵌入(t-SNE)的数据特征提取和故障分类方法。利用t-SNE算法非线性、非参数降维的优势,与费舍判别分析(FDA)、支持向量机(SVM)... 针对在工业过程中数据普遍存在的非线性特性,基于数据的局部相关关系对分类的影响,提出一种基于t分布随机邻域嵌入(t-SNE)的数据特征提取和故障分类方法。利用t-SNE算法非线性、非参数降维的优势,与费舍判别分析(FDA)、支持向量机(SVM)分类器相结合建立故障分类模型。利用t-SNE算法对故障数据进行非线性特征提取,获取数据的关键区分特征。用FDA和SVM算法实现故障分类和识别。通过田纳西-伊士曼(TE)过程获得的实验数据进行实验仿真分析,并分别与基于核主元分析法(KPCA)、拉普拉斯特征映射(LE)构建的KPCA-FDA、LE-FDA、KPCA-SVM、LE-SVM 4种故障分类模型进行比较。定量评估结果表明:即使基于不同分类器,相较于其他2种方法,该文方法的分类准确率分别提升了2%和7%,且其平均分类准确率能保持在97%以上。 展开更多
关键词 t分布随机邻域嵌入 工业过程 费舍判别分析 支持向量机 田纳西-伊士曼过程 核主元分析法 拉普拉斯特征映射
下载PDF
基于AVMD和排列熵的t分布邻域嵌入流形HHO-SVM模拟电路故障诊断方法
2
作者 陈晓梅 王行健 +1 位作者 蔡烨 周博 《电子测量与仪器学报》 CSCD 北大核心 2024年第6期233-240,共8页
随着信息大数据时代的到来,对于电子系统的依赖程度越来越高,因此模拟电路的故障诊断的准确度要求与日俱增。而模拟电路故障诊断困难,是电子系统诊断维修的瓶颈。本文提出基于自适应变分模态分解(AVMD)和排列熵(PE)的t分布邻域嵌入流形... 随着信息大数据时代的到来,对于电子系统的依赖程度越来越高,因此模拟电路的故障诊断的准确度要求与日俱增。而模拟电路故障诊断困难,是电子系统诊断维修的瓶颈。本文提出基于自适应变分模态分解(AVMD)和排列熵(PE)的t分布邻域嵌入流形哈里斯鹰优化支持向量机(HHO-SVM)模拟电路故障诊断方法。首先,利用AVMD对待测电路的观测信号进行自适应变分模态分解,得到多组IMF信号,不仅可以克服噪声干扰,而且可以来自适应地确定分解模式的数量,进一步提升分解精度;再对IMF计算排列熵,以充分体现IMF不同时段局部特征,二者相结合构建故障特征向量。并在此基础上,采用t分布式随机邻域嵌入(t-SNE)实现特征空间的流形学习和降维,构建具有良好区分度且保留原来的局部结构特征的故障特征向量;最后依靠哈里斯鹰优化支持向量机(HHO-SVM),使其具有良好的分类准确度,从而最终完成电路故障诊断。通过仿真验证,结果显示,本文方法故障诊断正确率可达100%,效果良好。 展开更多
关键词 自适应变分模态分解AVMD t分布邻域嵌入 故障诊断 哈里斯鹰优化支持向量机
下载PDF
融合自适应t分布和随机游走策略的松鼠优化算法的研究
3
作者 张莲 贾浩 +3 位作者 张尚德 赵梦琪 赵娜 黄伟 《计算机与数字工程》 2024年第8期2343-2347,2410,共6页
针对松鼠优化算法在后期寻优能力不足、容易陷入局部最优以及种群多样性损失较大的问题,提出了一种融合自适应t分布和随机游走策略的松鼠优化算法(TRWSSA)。该算法利用折射反向学习策略进行种群初始化,增强了种群的整体多样性;引入非线... 针对松鼠优化算法在后期寻优能力不足、容易陷入局部最优以及种群多样性损失较大的问题,提出了一种融合自适应t分布和随机游走策略的松鼠优化算法(TRWSSA)。该算法利用折射反向学习策略进行种群初始化,增强了种群的整体多样性;引入非线性搜索因子并且在每一次松鼠位置更新中加入自适应t分布扰动位置,减少算法陷入局部最优的概率,增强全局寻优能力;在最后的位置更新中加入随机游走策略对最优松鼠位置进行扰动更新,提高算法后期的收敛精度和速度。通过在8个基准函数上的仿真实验,对比其他智能算法以及改进算法,实验结果和分析表明TRWSSA在收敛速度、收敛精度上有明显提升,且能较好地解决寻优不足问题。 展开更多
关键词 智能优化算法 松鼠算法 算法改进 融合策略 折射反向学习 自适应t分布 随机游走 基准函数
下载PDF
基于自适应t分布与随机游走的麻雀搜索算法 被引量:2
4
作者 聂方鑫 王宇嘉 《电子科技》 2023年第7期75-80,共6页
针对麻雀搜索算法在解决复杂问题时存在的收敛精度降低以及陷入局部最优等问题,文中提出了一种基于自适应t分布与随机游走的麻雀搜索算法。该算法在初始化过程中使用反向学习来生成反向解,从中选择优秀的个体组成初始化种群。在原始麻... 针对麻雀搜索算法在解决复杂问题时存在的收敛精度降低以及陷入局部最优等问题,文中提出了一种基于自适应t分布与随机游走的麻雀搜索算法。该算法在初始化过程中使用反向学习来生成反向解,从中选择优秀的个体组成初始化种群。在原始麻雀搜索算法上采用自适应t分布策略和高斯随机游走策略可以提高麻雀个体的寻优能力,同时防止算法早熟。仿真结果表明,相较于对比算法,文中所提算法的收敛精度和收敛速度都有所提升。 展开更多
关键词 麻雀搜索算法 自适应t分布 反向学习策略 随机游走策略 函数优化 局部最优 全局最优 优化算法
下载PDF
改进T分布随机近邻嵌入改进聚类的机械故障分类方法
5
作者 朱曦海伦 易灿灿 《机械设计与制造》 北大核心 2023年第3期5-10,共6页
轴承、齿轮等零部件作为机械设备的关键组成部分,它们的运行状态直接影响着整个系统的安全。为此,提出了T分布随机近邻嵌入改进的机械故障诊断方法。该方法将机械故障信号历史监测信号作为原始特征库,采用t-SNE降维算法提取机械故障信... 轴承、齿轮等零部件作为机械设备的关键组成部分,它们的运行状态直接影响着整个系统的安全。为此,提出了T分布随机近邻嵌入改进的机械故障诊断方法。该方法将机械故障信号历史监测信号作为原始特征库,采用t-SNE降维算法提取机械故障信号的主特征矩阵,基于改进的聚类算法搜寻每一采样时刻的聚类中心,分别计算在各个采样时刻的偏心距离,得到归一化的累积偏心距离矩阵,从而实现故障的准确预测。结果表明,所提出的方法能够准确地分类不同机械故障模式,有助于保障设备健康平稳运行。 展开更多
关键词 流形学习 聚类算法 t分布随机近邻嵌入 故障诊断
下载PDF
基于t分布随机邻域嵌入的阿尔茨海默症诊断模型 被引量:3
6
作者 成超 杨晨晖 《厦门大学学报(自然科学版)》 CAS CSCD 北大核心 2017年第1期123-128,共6页
对大脑皮层厚度数据进行建模从而实现阿尔茨海默症的诊断.在训练样本少,数据复杂且非线性的情况下,相比于BP神经网络和k最近邻等算法,支持向量机算法表现出更优良的特性.针对支持向量机算法受数据高维度的影响,将t分布随机邻域嵌入算法... 对大脑皮层厚度数据进行建模从而实现阿尔茨海默症的诊断.在训练样本少,数据复杂且非线性的情况下,相比于BP神经网络和k最近邻等算法,支持向量机算法表现出更优良的特性.针对支持向量机算法受数据高维度的影响,将t分布随机邻域嵌入算法引入到支持向量机模型.t分布随机邻域嵌入算法既能撷取原始高维数据的局部信息,也能揭示全局结构.t分布随机邻域嵌入算法先将这些非线性数据降维到低维空间,支持向量机算法再将这数据映射到新的高维空间,通过寻找最佳分类超平面的方法,使分类效果达到最佳水平.最后将集成学习算法AdaBoost的思想融入模型,可以使模型的分类准确率得到提升,而且变得鲁棒性更强. 展开更多
关键词 支持向量机 t分布随机邻域嵌入 集成学习 阿尔茨海默症
下载PDF
融合t-分布随机邻域嵌入与自动谱聚类的脑功能精细分区方法 被引量:2
7
作者 胡颖 王丽嘉 聂生东 《波谱学杂志》 北大核心 2021年第3期392-402,共11页
本文针对目前脑功能分区不够准确的问题,基于静息态功能磁共振数据,提出了一种融合t-分布随机邻域嵌入(t-SNE)与自动谱聚类(ASC)的人脑功能精细分区的算法.首先,基于静息态功能磁共振图像,对需功能划分的脑区与全脑的时间序列作相关分析... 本文针对目前脑功能分区不够准确的问题,基于静息态功能磁共振数据,提出了一种融合t-分布随机邻域嵌入(t-SNE)与自动谱聚类(ASC)的人脑功能精细分区的算法.首先,基于静息态功能磁共振图像,对需功能划分的脑区与全脑的时间序列作相关分析,得到需划分脑区的功能连接模式;然后,利用t-SNE算法提取高维功能连接模式特征;最后,通过基于本征间隙的ASC算法自动确定聚类数目,并对降维后的脑区特征分类,得到精细划分的脑亚区.模拟种子区域上的实验结果表明,相较谱聚类算法,以及结合主成分分析的谱聚类算法,本文方法对脑功能体素划分更优.进一步将本方法应用到真实人脑的功能分区中,成功地将海马旁回分为左右半球各3个亚区.本研究表明使用t-SNE与ASC融合的算法可提高脑功能分区准确性,是脑功能精细分区、进而构建脑功能图谱的一种有效方法. 展开更多
关键词 静息态功能磁共振成像 功能连接 功能分区 t-分布随机邻域嵌入 自动谱聚类
下载PDF
融合邻域分布LLE算法轴承故障信号检测 被引量:1
8
作者 张彦生 张利来 刘远红 《吉林大学学报(信息科学版)》 CAS 2023年第5期780-786,共7页
针对降维算法局部线性嵌入算法LLE(Local Linear Embedding)未能充分保留高维数据中邻域之间的结构的问题,提出了一种新的融合邻域分布属性的局部线性嵌入算法。该算法通过计算每个样本数据的邻域分布以及KL(Kullback-Leibler)散度度量... 针对降维算法局部线性嵌入算法LLE(Local Linear Embedding)未能充分保留高维数据中邻域之间的结构的问题,提出了一种新的融合邻域分布属性的局部线性嵌入算法。该算法通过计算每个样本数据的邻域分布以及KL(Kullback-Leibler)散度度量不同邻域点与其中心样本各自的近邻分布差异,并利用其差值优化重构的权重系数,从而获得更精确的低维电机数据。通过可视化、Fisher测量和识别精度3个评价结果验证了该算法挖掘电机轴承检测数据高维结构的有效性。 展开更多
关键词 局部线性嵌入 邻域分布 降维算法 电机轴承
下载PDF
基于改进黏菌算法优化BiLSTM的短期供热负荷控制预测
9
作者 薛贵军 赵广昊 史彩娟 《沈阳工业大学学报》 CAS 北大核心 2024年第4期434-441,共8页
针对短期供热负荷控制预测的问题,提出了一种基于改进黏菌算法优化BiLSTM的预测模型。利用猫映射、T分布变异和随机反向学习等改进策略对黏菌算法进行改进,改进后的黏菌算法优化BiLSTM网络参数,构建ISMA-BiLSTM模型,对换热站热负荷进行... 针对短期供热负荷控制预测的问题,提出了一种基于改进黏菌算法优化BiLSTM的预测模型。利用猫映射、T分布变异和随机反向学习等改进策略对黏菌算法进行改进,改进后的黏菌算法优化BiLSTM网络参数,构建ISMA-BiLSTM模型,对换热站热负荷进行预测。实验结果表明,ISMA-BiLSTM模型与SMA-BiLSTM、BiLSTM和LSTM模型相比,预测结果更加合理且预测精度有所提高,在短期供热负荷预测中能满足实际工程控制需要。 展开更多
关键词 集中供热系统 热负荷 短期供热负荷控制预测 黏菌算法 双向长短期记忆网络 猫映射 t分布变异 随机反向学习
下载PDF
基于费希尔信息度量的随机近邻嵌入算法 被引量:2
10
作者 张亚红 李玉鑑 《北京工业大学学报》 CAS CSCD 北大核心 2016年第6期862-869,共8页
为提高文本分类的准确率,提出了费希尔信息度量随机近邻嵌入算法(Fisher information metric based on stochastic neighbor embedding,FIMSNE).首先,把文本的词频向量看作统计流形上的概率密度样本点,利用费希尔信息度量计算样本点之... 为提高文本分类的准确率,提出了费希尔信息度量随机近邻嵌入算法(Fisher information metric based on stochastic neighbor embedding,FIMSNE).首先,把文本的词频向量看作统计流形上的概率密度样本点,利用费希尔信息度量计算样本点之间的距离;然后,从信息几何的观点出发,对t分布随机近邻嵌入(t-stochastic neighbor embedding,t-SNE)进行改进,实现了新算法.真实文本数据集上的二维嵌入和分类实验的结果表明:FIMSNE的性能在总体上优于t-SNE、费希尔信息非参数嵌入(Fisher information nonparametric embedding,FINE)和主成分分析(principal components analysis,PCA). 展开更多
关键词 文本分类 统计流形 信息几何 费希尔信息度量 t分布随机近邻嵌入
下载PDF
基于HMFDE和t-SNE的旋转机械故障诊断方法
11
作者 尹久 张杰 《机电工程》 CAS 北大核心 2024年第6期1058-1067,共10页
针对旋转机械的故障特征提取较难,以及单一类型的特征无法全面反映故障特性的问题,提出了一种基于混合多尺度波动散布熵(HMFDE)、t分布-随机邻域嵌入(t-SNE)和郊狼优化算法(COA)优化极限学习机(ELM)的旋转机械故障诊断方法。首先,采用... 针对旋转机械的故障特征提取较难,以及单一类型的特征无法全面反映故障特性的问题,提出了一种基于混合多尺度波动散布熵(HMFDE)、t分布-随机邻域嵌入(t-SNE)和郊狼优化算法(COA)优化极限学习机(ELM)的旋转机械故障诊断方法。首先,采用特征加权提出了混合多尺度波动散布熵方法,并将其用于提取旋转机械振动信号的故障特征;随后,采用t-SNE方法对混合故障特征进行了特征降维,挑选出了最能够反映故障特性的特征子集,构建了敏感特征样本;最后,采用郊狼优化算法对极限学习机的输入权重和隐含层阈值进行了优化,完成了旋转机械的故障识别和分类;以齿轮箱和滚动轴承故障数据集为对象,对基于HMFDE、t-SNE和COA-ELM的故障诊断方法进行了实验,验证了方法的有效性。研究结果表明:采用HMFDE-t-SNE-CAO-ELM故障诊断方法可以取得100%的故障识别准确率,该方法能够有效地诊断旋转机械的不同故障类型和损伤;相较于基于单一类型特征的故障诊断方法,其准确率分别可以提高0.68%、22.42%、29.18%(齿轮箱)和1.43%、8.23%、23.67%(滚动轴承),虽然牺牲了一定的计算效率,但准确率得到了明显的提高;相较于其他常规故障分类器,COA-ELM的故障识别准确率具有明显的优势。 展开更多
关键词 旋转机械 故障诊断 齿轮箱 滚动轴承 混合多尺度波动散布熵 t分布-随机邻域嵌入 郊狼优化算法 极限学习机
下载PDF
基于改进蜘蛛蜂算法的无人机三维路径规划
12
作者 张颖 姜文刚 +1 位作者 陈一鸣 管文瑞 《电子测量技术》 北大核心 2024年第11期101-111,共11页
为了提高无人机路径规划在复杂环境中的收敛速度和收敛精度,避免陷入局部最优,提出了一种基于改进蜘蛛蜂算法的无人机三维路径规划方法。本文在传统SWO算法中引入自适应t分布扰动变异和Cubic映射策略更新搜索阶段位置,避免局部早熟收敛... 为了提高无人机路径规划在复杂环境中的收敛速度和收敛精度,避免陷入局部最优,提出了一种基于改进蜘蛛蜂算法的无人机三维路径规划方法。本文在传统SWO算法中引入自适应t分布扰动变异和Cubic映射策略更新搜索阶段位置,避免局部早熟收敛;然后,引入周期性随机振幅动态调整追逐和逃逸阶段搜索方向,帮助算法跳出局部最优,并结合螺旋更新机制和Levy飞行策略增强算法全局寻优能力,提高算法收敛精度;最后,将ISWO算法在8个测试函数中进行性能验证并实验仿真,结果表明,复杂地形环境中ISWO算法执行时间相比传统SWO算法减少了26.86%,并且较CPO、COA、GOOSE、PSO、GWO算法执行时间减少了13.80%~28.27%不等。同时,ISWO算法最小适应度值较传统SWO算法减小49.76%,较其他算法至少减小27.73%。由此得出,本文所提改进算法能够在复杂地形环境中快速得到一条更短且更安全的路径。 展开更多
关键词 路径规划 蜘蛛蜂算法 自适应t分布扰动 周期性随机振幅 螺旋更新机制
下载PDF
基于t-SNE降维和放射传播聚类算法的低压配电网相位识别 被引量:3
13
作者 柳守诚 王淳 +4 位作者 邹智辉 陈佳慧 周晗 刘伟 张旭 《中国电力》 CSCD 北大核心 2023年第5期108-117,共10页
智能电表的广泛普及和高级测量体系(advancedmeteringinfrastructure,AMI)的建立为分析配电网运行情况提供了大量监测信息与测量数据,而台区用户的相位信息变动又为准确掌握台区运行情况带来难题。针对台区用户的相位识别问题,提出了一... 智能电表的广泛普及和高级测量体系(advancedmeteringinfrastructure,AMI)的建立为分析配电网运行情况提供了大量监测信息与测量数据,而台区用户的相位信息变动又为准确掌握台区运行情况带来难题。针对台区用户的相位识别问题,提出了一种基于用户电压数据的t分布随机邻接嵌入(t-distributed stochastic neighbor embedding,t-SNE)特征提取及放射传播(affinity propagation,AP)聚类算法的相位识别方法。先对提取出的用户电压数据进行Z-score数据标准化处理,由t-SNE降维提取出数据特征,再采用放射传播聚类算法对用户进行相位识别。选取某市2个小区进行算例分析,采用评价指标比较了不同识别方法的识别效果,并分析了数据采集频率和计量误差对识别效果的影响。实际台区算例分析验证了所提方法的准确性,说明所提方法能够有效解决台区用户相位识别问题。 展开更多
关键词 低压台区 相位识别 机器学习 t分布随机邻接嵌入 放射传播聚类算法
下载PDF
基于CAE-TSNE的成品油管道运行工况识别 被引量:1
14
作者 郑坚钦 杜渐 +4 位作者 梁永图 赵伟 王昌 丁鹏 吴全 《石油科学通报》 CAS 2024年第1期148-157,共10页
成品油管道运行工况变化频繁,难以精准判断管道运行状态,依靠现场人员进行识别监控易造成误判。本文为实现管道运行工况的准确识别,考虑管道的物理空间特性,分析整理各站运行参数(压力、流量、密度);考虑管道运行的时间序列特性,基于SC... 成品油管道运行工况变化频繁,难以精准判断管道运行状态,依靠现场人员进行识别监控易造成误判。本文为实现管道运行工况的准确识别,考虑管道的物理空间特性,分析整理各站运行参数(压力、流量、密度);考虑管道运行的时间序列特性,基于SCADA管道数据构造运行数据矩阵,以克服单一时刻的瞬态扰动。针对管道运行数据高维度、非线性的特点,利用卷积自编码器(CAE)强大的特征压缩及重构能力对管道数据做降噪处理;利用T分布邻域嵌入算法(T-SNE)对管道数据做降维聚类处理,最终建立了基于CAE-TSNE的管道运行工况识别模型。以某两条成品油管道为例,对比主流的非线性分类模型(ANN、DT、RF),结果表明基于CAE-TSNE的工况识别模型精度最高,对降噪后的运行数据识别准确率可达到99%以上,可用于指导现场管道的运行管理。 展开更多
关键词 成品油管道 运行工况识别 数据矩阵 卷积自编码器 t分布邻域嵌入
下载PDF
BH随机邻域嵌入在驾驶行为识别中的应用
15
作者 杨云开 范文兵 彭东旭 《计算机应用与软件》 北大核心 2021年第1期166-170,210,共6页
针对驾驶系统处理大量驾驶数据时出现的效率和精度不足的问题,提出一种基于巴恩斯哈特随机邻域嵌入(BH-SNE)和径向基函数神经网络(RBFNN)的识别算法。从手机传感器中获取加速度数据、陀螺仪数据和磁强计数据,融合这三种传感器数据,经过... 针对驾驶系统处理大量驾驶数据时出现的效率和精度不足的问题,提出一种基于巴恩斯哈特随机邻域嵌入(BH-SNE)和径向基函数神经网络(RBFNN)的识别算法。从手机传感器中获取加速度数据、陀螺仪数据和磁强计数据,融合这三种传感器数据,经过预处理后使用BH-SNE完成降维处理,将降维数据输入到RBFNN中识别出驾驶行为。实验结果表明,BH-SNE的效率远高于t分布式随机邻域嵌入(t-SNE),并且可视化效果优于t-SNE,该模型的整体识别率为98.8%,分类效果优于传统的机器学习算法。 展开更多
关键词 传感器数据 数据融合 数据可视化 t分布随机邻域嵌入 径向基函数神经网络
下载PDF
基于混合智能优化算法的输变电工程全环节关键数据处理方法
16
作者 何琳 黄博 +1 位作者 申亚波 李爽 《沈阳工业大学学报》 CAS 北大核心 2024年第3期263-269,共7页
为了提升输变电工程全环节的数据管理质效,提出了一种基于混合智能优化算法的输变电工程全环节关键数据处理方法。该方法以造价数据管理为核心,利用层次分析法建立工程造价控制评估模型,获得了造价评估指标与指标权重。同时设计了一种... 为了提升输变电工程全环节的数据管理质效,提出了一种基于混合智能优化算法的输变电工程全环节关键数据处理方法。该方法以造价数据管理为核心,利用层次分析法建立工程造价控制评估模型,获得了造价评估指标与指标权重。同时设计了一种改进的随机邻域嵌入算法实现数据降维,进而引入经自适应改进的鲸鱼优化算法及粒子群算法。在交叉策略框架下,将两者相结合并得到鲸鱼粒子群混合优化算法。实验结果表明,所提方法对输变电工程全环节关键数据的处理效果较优,而与其他方法相比,其精度和效率也均具备显著优势,能够提升数据管理水平。 展开更多
关键词 输变电工程 全环节 鲸鱼粒子群混合优化算法 随机邻域嵌入算法 工程造价 关键数据 交叉策略 数据管理 层次分析法
下载PDF
Tsne降维可视化分析及飞蛾火焰优化ELM算法在电力负荷预测中应用 被引量:51
17
作者 张淑清 段晓宁 +4 位作者 张立国 姜安琦 姚玉永 刘勇 穆勇 《中国电机工程学报》 EI CSCD 北大核心 2021年第9期3120-3129,共10页
电力系统的稳定运行具有负荷平衡的强约束性,准确的电力负荷预测在保证电力系统规划与可靠、经济运行方面具有十分重要的意义,影响着电力系统的诸多决策,如经济调度、自动发电控制、安全评估、维护调度和能源商业化等。该文针对电力负... 电力系统的稳定运行具有负荷平衡的强约束性,准确的电力负荷预测在保证电力系统规划与可靠、经济运行方面具有十分重要的意义,影响着电力系统的诸多决策,如经济调度、自动发电控制、安全评估、维护调度和能源商业化等。该文针对电力负荷预测的多种气象因素影响,提出一种基于Tsne降维可视化分析及飞蛾火焰优化ELM算法(MFOELM)的电力负荷预测新方法。针对影响电力负荷预测的高维气象数据,采用改进的SNE降维可视化分析方法Tsne,解决了数据拥挤造成可视化效果不佳且数据结构易发生改变的问题,通过与Kpca、SNE降维方法的对比实验,证明了Tsne可以更好地将高维气象数据向低维空间映射,较高地保持高维空间中的数据结构并改善数据可视化效果;针对ELM负荷预测模型的局限,利用MFO在求解具有约束和未知搜索空间的复杂问题时具有的优越性对ELM优化,更好地解决了ELM权值输出不稳定,易陷入局部最小值等问题。通过对SAELM、PSOELM、MFOELM三种预测算法进行寻优实验,结果表明MFO不但具有更快的求解速度,而且提高了ELM的预测精度。通过对国际公开的美国日气象数据降维,协同负荷数据进行预测进行对比实验,证明了该文方法的有效性和优越性。该文方法在唐山实际电网负荷预测中应用,为制定合理的电网运行方式提供依据。 展开更多
关键词 短期电力负荷预测 t分布随机邻接嵌入(tsne) 降维可视化分析 飞蛾火焰优化ELM算法(MFOELM)
下载PDF
基于随机投影的正交判别流形学习算法 被引量:3
18
作者 马丽 董唯光 +1 位作者 梁金平 张晓东 《郑州大学学报(理学版)》 CAS 北大核心 2016年第1期102-109,115,共9页
提出一种基于流形距离的局部线性嵌入算法,以流形距离测度数据间的相似度,选择各样本点的近邻域,解决了欧氏距离作为相似性度量时对邻域参数的敏感性.在MDLLE算法中引入最大边缘准则(maximum margin criterion,MMC)来构建最优平移缩放模... 提出一种基于流形距离的局部线性嵌入算法,以流形距离测度数据间的相似度,选择各样本点的近邻域,解决了欧氏距离作为相似性度量时对邻域参数的敏感性.在MDLLE算法中引入最大边缘准则(maximum margin criterion,MMC)来构建最优平移缩放模型,使得算法在保持LLE局部几何结构的同时,具有MMC准则判别能力.通过正交化低维特征向量可消除降维过程中的噪声影响,进而提高算法的监督判别能力.由实验结果得到,所提出的方法具有良好的降维效果,能有效避免局部降维算法对邻域参数的敏感.随机投影独立于原始高维数据,将高维数据映射到一个行单位化的随机变换矩阵的低维空间中,维持映射与原始数据的紧密关系,从理论上分析证明了在流形学习算法中采用随机投影可以高概率保证在低维空间保持高维数据信息. 展开更多
关键词 流形学习算法 邻域选择 流形距离 正交判别 局部线性嵌入 随机投影
下载PDF
基于改进t-SNE和RBFNN的柴油机故障诊断 被引量:6
19
作者 尚前明 黄兴烨 +3 位作者 沈栋 朱仁杰 胡秋芳 邱天 《船舶工程》 CSCD 北大核心 2023年第1期91-97,共7页
针对柴油机故障诊断问题,提出一种基于改进t分布的随机邻域嵌入(t-SNE)和径向基函数神经网络(RBFNN)的柴油机故障诊断方法。针对t-SNE算法对振动信号的实际降维效果不够理想的问题,进行自适应加权优化;引入遗传算法(GA)解决果蝇优化算法... 针对柴油机故障诊断问题,提出一种基于改进t分布的随机邻域嵌入(t-SNE)和径向基函数神经网络(RBFNN)的柴油机故障诊断方法。针对t-SNE算法对振动信号的实际降维效果不够理想的问题,进行自适应加权优化;引入遗传算法(GA)解决果蝇优化算法(FOA)陷入局部最优的问题,将GA-FOA应用于RBFNN参数选取中;采用改进后的RBFNN模型对经自适应加权t-SNE降维的数据进行故障识别。研究结果表明,改进后的算法能明显改善聚类效果,提高故障识别的正确率,具有良好的应用前景。 展开更多
关键词 柴油机 振动信号 故障诊断 t分布随机邻域嵌入(t-SNE) 径向基函数神经网络(RBFNN)
下载PDF
基于改进CEEMDAN和t-SNE的故障特征提取方法 被引量:1
20
作者 郑惠萍 王卓 +3 位作者 彭立强 秦志英 赵月静 裴春兴 《机床与液压》 北大核心 2023年第19期216-222,共7页
针对非线性、非稳定振动信号难以提取有效故障特征的问题,提出一种基于改进自适应噪声完备集合经验模态分解(CEEMDAN)和t-分布随机邻域嵌入(t-SNE)算法相结合的故障特征提取方法。利用三次Hermite插值代替三次样条插值构造包络线,提高传... 针对非线性、非稳定振动信号难以提取有效故障特征的问题,提出一种基于改进自适应噪声完备集合经验模态分解(CEEMDAN)和t-分布随机邻域嵌入(t-SNE)算法相结合的故障特征提取方法。利用三次Hermite插值代替三次样条插值构造包络线,提高传统CEEMDAN对非平稳信号的分解精度;利用改进后的CEEMDAN对原始信号分解并通过相关系数筛选出有效固有模态分量(IMF),提取有效IMF分量的时频特征、奇异值和能量值构建高维混合域特征集;最后,通过t-SNE算法挖掘高维混合域特征信息得到低维敏感特征,并将其输入到支持向量机中进行分类,以分类准确率作为特征提取效果评价指标。在齿轮箱故障模拟实验台进行实验验证,结果表明该方法能够准确地提取故障特征,为故障特征提取提供新思路。 展开更多
关键词 Hermite插值法 自适应噪声完备集合经验模态分解 t-分布随机邻域嵌入 故障特征提取
下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部