期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于tSNE-ASC特征选择和DSmT融合决策的滚动轴承声振信号故障诊断
被引量:
6
1
作者
陈剑
程明
《电子测量与仪器学报》
CSCD
北大核心
2022年第4期195-204,共10页
针对滚动轴承早期故障特征微弱且难以有效辨识的问题,提出一种基于tSNE-ASC特征选择和DSmT融合决策的滚动轴承声振信号故障诊断方法。利用多个传感器采集轴承在不同故障模式下的声振信号,将每个信号通过VMD分解得到K个IMF分量;对各个IM...
针对滚动轴承早期故障特征微弱且难以有效辨识的问题,提出一种基于tSNE-ASC特征选择和DSmT融合决策的滚动轴承声振信号故障诊断方法。利用多个传感器采集轴承在不同故障模式下的声振信号,将每个信号通过VMD分解得到K个IMF分量;对各个IMF分量进行特征提取,构建各个特征的数据集矩阵;利用tSNE将各特征数据集矩阵降维至二维,计算平均轮廓系数(ASC);根据ASC大于临界值提取出声振故障信号的敏感特征;基于诊断模型实现轴承故障的初级诊断;利用DSmT将声振信号初级诊断结果进行融合决策,得出最终的诊断结论。实验结果表明:基于tSNE-ASC的特征选择方法能有效提取混合域特征中的敏感特征,在不同工况、不同诊断模型中均具有很高的诊断精度;DSmT决策融合有效降低了单一信号诊断的不确定性,在变载荷和升降速非平稳工况下均有很高的诊断精度。
展开更多
关键词
声振信号
轴承故障诊断
变分模态分解
t分布随机邻近嵌入
平均轮廓系数
DSm
t
融合决策
下载PDF
职称材料
题名
基于tSNE-ASC特征选择和DSmT融合决策的滚动轴承声振信号故障诊断
被引量:
6
1
作者
陈剑
程明
机构
合肥工业大学噪声振动研究所
安徽省汽车NVH技术研究中心
出处
《电子测量与仪器学报》
CSCD
北大核心
2022年第4期195-204,共10页
基金
国家自然科学基金青年基金(11604070)
安徽省科技重大专项(17030901049)项目资助
文摘
针对滚动轴承早期故障特征微弱且难以有效辨识的问题,提出一种基于tSNE-ASC特征选择和DSmT融合决策的滚动轴承声振信号故障诊断方法。利用多个传感器采集轴承在不同故障模式下的声振信号,将每个信号通过VMD分解得到K个IMF分量;对各个IMF分量进行特征提取,构建各个特征的数据集矩阵;利用tSNE将各特征数据集矩阵降维至二维,计算平均轮廓系数(ASC);根据ASC大于临界值提取出声振故障信号的敏感特征;基于诊断模型实现轴承故障的初级诊断;利用DSmT将声振信号初级诊断结果进行融合决策,得出最终的诊断结论。实验结果表明:基于tSNE-ASC的特征选择方法能有效提取混合域特征中的敏感特征,在不同工况、不同诊断模型中均具有很高的诊断精度;DSmT决策融合有效降低了单一信号诊断的不确定性,在变载荷和升降速非平稳工况下均有很高的诊断精度。
关键词
声振信号
轴承故障诊断
变分模态分解
t分布随机邻近嵌入
平均轮廓系数
DSm
t
融合决策
Keywords
acous
t
ic vibra
t
ion signal
bearing faul
t
diagnosis
varia
t
ional mode decomposi
t
ion
t
-dis
t
ribu
t
ion random adjacen
t
embedding
mean silhoue
t
t
e coefficien
t
DSm
t
fusion decision
分类号
TH133.33 [机械工程—机械制造及自动化]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于tSNE-ASC特征选择和DSmT融合决策的滚动轴承声振信号故障诊断
陈剑
程明
《电子测量与仪器学报》
CSCD
北大核心
2022
6
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部