期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于IMF奇异值熵和t-SNE的滚动轴承故障识别 被引量:9
1
作者 段萍 王旭 +2 位作者 丁承君 冯玉伯 秦越 《传感器与微系统》 CSCD 北大核心 2021年第3期134-137,共4页
针对滚动轴承振动信号非线性、非平稳性以及故障难以识别的问题,提出了一种经验小波变换(EWT)、奇异值熵和t分布随机领域嵌入(t-SNE)相结合的滚动轴承故障识别方法。对原始振动信号进行EWT分解得到若干固有模态分量(IMF),对IMF进行奇异... 针对滚动轴承振动信号非线性、非平稳性以及故障难以识别的问题,提出了一种经验小波变换(EWT)、奇异值熵和t分布随机领域嵌入(t-SNE)相结合的滚动轴承故障识别方法。对原始振动信号进行EWT分解得到若干固有模态分量(IMF),对IMF进行奇异值分解求取奇异值熵。利用t-SNE算法对奇异值熵组成的特征矩阵进行降维,所提取的低维特征能够有效反映故障信息。最后,将低维特征输入到Kmeans分类器中进行模式识别。将该方法应用到滚动轴承实验中并与EMD+奇异值熵+t-SNE、EWT+奇异值熵+PCA方法进行对比,结果表明:所提方法能够更有效地提取滚动轴承的故障特征,提高了故障识别的精度。 展开更多
关键词 经验小波变换 奇异值熵 t分布随机领域嵌入 故障识别
下载PDF
分组加权t-SNE的手写数字奇异类样本聚类方法研究 被引量:1
2
作者 杜芬 王彬 +3 位作者 薛洁 龙雨涵 刘辉 熊新 《小型微型计算机系统》 CSCD 北大核心 2018年第12期2729-2734,共6页
针对t-SNE算法在高维降维中存在的奇异类样本区分能力弱的不足,给出了一种将分组加权的改进t-SNE算法应用于数字手写体奇异类样本的聚类和识别中的方法.该方法根据样本在高维空间内的不同分布状况而应用不同的分组权值重新计算相似度,... 针对t-SNE算法在高维降维中存在的奇异类样本区分能力弱的不足,给出了一种将分组加权的改进t-SNE算法应用于数字手写体奇异类样本的聚类和识别中的方法.该方法根据样本在高维空间内的不同分布状况而应用不同的分组权值重新计算相似度,进而实现更合理的高维空间到低维空间的聚类映射.在基于MNIST构建的奇异类样本库上的对比试验结果表明,与t-SNE算法相比,分组加权t-SNE算法的聚类可视化与指标均得到了提高,其中查全率平均提高了4%,查准率平均提高了3. 3%,从而验证了该方法的可行性和有效性. 展开更多
关键词 奇异手写体数字识别 t分布随机领域嵌入算法 分组加权 高维降维
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部